These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 32390111)

  • 1. Test-retest repeatability and software reproducibility of myocardial flow measurements using rest/adenosine stress Rubidium-82 PET/CT with and without motion correction in healthy young volunteers.
    Byrne C; Kjaer A; Olsen NE; Forman JL; Hasbak P
    J Nucl Cardiol; 2021 Dec; 28(6):2860-2871. PubMed ID: 32390111
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dependency of cardiac rubidium-82 imaging quantitative measures on age, gender, vascular territory, and software in a cardiovascular normal population.
    Sunderland JJ; Pan XB; Declerck J; Menda Y
    J Nucl Cardiol; 2015 Feb; 22(1):72-84. PubMed ID: 25294436
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Myocardial blood flow quantification by Rb-82 cardiac PET/CT: A detailed reproducibility study between two semi-automatic analysis programs.
    Dunet V; Klein R; Allenbach G; Renaud J; deKemp RA; Prior JO
    J Nucl Cardiol; 2016 Jun; 23(3):499-510. PubMed ID: 25995182
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intersoftware variability impacts classification of cardiac PET exams.
    Oliveira JB; Sen YM; Wechalekar K
    J Nucl Cardiol; 2019 Dec; 26(6):2007-2012. PubMed ID: 30238299
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reproducibility of LVEF, LV volumes, and LV mass between Rubidium-82 PET/CT scans in young healthy volunteers using two commercially available software packages.
    Byrne C; Kjaer A; Forman JL; Hasbak P
    J Nucl Cardiol; 2020 Aug; 27(4):1237-1245. PubMed ID: 30919271
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of clinical tools for measurements of regional stress and rest myocardial blood flow assessed with 13N-ammonia PET/CT.
    Slomka PJ; Alexanderson E; Jácome R; Jiménez M; Romero E; Meave A; Le Meunier L; Dalhbom M; Berman DS; Germano G; Schelbert H
    J Nucl Med; 2012 Feb; 53(2):171-81. PubMed ID: 22228795
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Absolute myocardial flow quantification with (82)Rb PET/CT: comparison of different software packages and methods.
    Tahari AK; Lee A; Rajaram M; Fukushima K; Lodge MA; Lee BC; Ficaro EP; Nekolla S; Klein R; deKemp RA; Wahl RL; Bengel FM; Bravo PE
    Eur J Nucl Med Mol Imaging; 2014 Jan; 41(1):126-35. PubMed ID: 23982454
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Automated dynamic motion correction using normalized gradient fields for
    Lee BC; Moody JB; Poitrasson-Rivière A; Melvin AC; Weinberg RL; Corbett JR; Murthy VL; Ficaro EP
    J Nucl Cardiol; 2020 Dec; 27(6):1982-1998. PubMed ID: 30406609
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantification of myocardial blood flow (MBF) and reserve (MFR) incorporated with a novel segmentation approach: Assessments of quantitative precision and the lower limit of normal MBF and MFR in patients.
    Liu H; Thorn S; Wu J; Fazzone-Chettiar R; Sandoval V; Miller EJ; Sinusas AJ; Liu YH
    J Nucl Cardiol; 2021 Aug; 28(4):1236-1248. PubMed ID: 32715416
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantification of myocardial blood flow with 82Rb positron emission tomography: clinical validation with 15O-water.
    Prior JO; Allenbach G; Valenta I; Kosinski M; Burger C; Verdun FR; Bischof Delaloye A; Kaufmann PA
    Eur J Nucl Med Mol Imaging; 2012 Jun; 39(6):1037-47. PubMed ID: 22398957
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fully automated, inline quantification of myocardial blood flow with cardiovascular magnetic resonance: repeatability of measurements in healthy subjects.
    Brown LAE; Onciul SC; Broadbent DA; Johnson K; Fent GJ; Foley JRJ; Garg P; Chew PG; Knott K; Dall'Armellina E; Swoboda PP; Xue H; Greenwood JP; Moon JC; Kellman P; Plein S
    J Cardiovasc Magn Reson; 2018 Jul; 20(1):48. PubMed ID: 29983119
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Consistent tracer administration profile improves test-retest repeatability of myocardial blood flow quantification with
    Klein R; Ocneanu A; Renaud JM; Ziadi MC; Beanlands RSB; deKemp RA
    J Nucl Cardiol; 2018 Jun; 25(3):929-941. PubMed ID: 27804067
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Automated dynamic motion correction improves repeatability and reproducibility of myocardial blood flow quantification with rubidium-82 PET imaging.
    Choueiry J; Mistry NP; Beanlands RSB; deKemp RA
    J Nucl Cardiol; 2023 Jun; 30(3):1133-1146. PubMed ID: 36460862
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimally Repeatable Kinetic Model Variant for Myocardial Blood Flow Measurements with
    Ocneanu AF; deKemp RA; Renaud JM; Adler A; Beanlands RS; Klein R
    Comput Math Methods Med; 2017; 2017():6810626. PubMed ID: 28293274
    [No Abstract]   [Full Text] [Related]  

  • 15. Accuracy and Reproducibility of Myocardial Blood Flow Quantification by Single Photon Emission Computed Tomography Imaging in Patients With Known or Suspected Coronary Artery Disease.
    de Souza ACDAH; Harms HJ; Martell L; Bibbo C; Harrington M; Sullivan K; Hainer J; Dorbala S; Blankstein R; Taqueti VR; Foley Kijewski M; Park MA; Meretta A; Breault C; Roth N; Poitrasson-Rivière A; Soman P; Gullberg GT; Di Carli MF
    Circ Cardiovasc Imaging; 2022 Jun; 15(6):e013987. PubMed ID: 35674051
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Internal validation of myocardial flow reserve PET imaging using stress/rest myocardial activity ratios with Rb-82 and N-13-ammonia.
    Juneau D; Wu KY; Kaps N; Yao J; Renaud JM; Beanlands RSB; Ruddy TD; deKemp RA
    J Nucl Cardiol; 2021 Jun; 28(3):835-850. PubMed ID: 33389638
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Myocardial perfusion quantification with Rb-82 PET: good interobserver agreement of Carimas software on global, regional, and segmental levels.
    Nesterov SV; Deshayes E; Juarez-Orozco LE; deKemp RA; Sciagrà R; Malaspina S; Settimo L; Han C; Ryzhkova DV; Kostina IS; Gwet KL; Prior JO; Knuuti JM
    Ann Nucl Med; 2022 Jun; 36(6):507-514. PubMed ID: 35192160
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impaired myocardial perfusion is associated with increasing end-systolic- and end-diastolic volumes in patients with non-ischemic systolic heart failure: a cross-sectional study using Rubidium-82 PET/CT.
    Byrne C; Hasbak P; Kjaer A; Thune JJ; Køber L
    BMC Cardiovasc Disord; 2019 Mar; 19(1):68. PubMed ID: 30902043
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Blood pool and tissue phase patient motion effects on
    Lee BC; Moody JB; Poitrasson-Rivière A; Melvin AC; Weinberg RL; Corbett JR; Ficaro EP; Murthy VL
    J Nucl Cardiol; 2019 Dec; 26(6):1918-1929. PubMed ID: 29572594
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Short-term repeatability of myocardial blood flow using
    Otaki Y; Lassen ML; Manabe O; Eisenberg E; Gransar H; Wang F; Lee YJ; Tzolos E; Berman DS; Slomka PJ
    J Nucl Cardiol; 2021 Aug; 28(4):1718-1725. PubMed ID: 31559536
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.