These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 32390185)

  • 1. Field Tracer Tests to Evaluate Transport Properties of Tryptophan and Humic Acid in Karst.
    Frank S; Goeppert N; Goldscheider N
    Ground Water; 2021 Jan; 59(1):59-70. PubMed ID: 32390185
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Experimental and modeling evidence of kilometer-scale anomalous tracer transport in an alpine karst aquifer.
    Goeppert N; Goldscheider N; Berkowitz B
    Water Res; 2020 Jul; 178():115755. PubMed ID: 32348930
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Determination of pollution and recovery time of karst springs, an example from a carbonate aquifer in Israel.
    Magal E; Arbel Y; Caspi S; Glazman H; Greenbaum N; Yechieli Y
    J Contam Hydrol; 2013 Feb; 145():26-36. PubMed ID: 23270817
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multiple fluorescence approaches to identify rapid changes in microbial indicators at karst springs.
    Vucinic L; O'Connell D; Dubber D; Coxon C; Gill L
    J Contam Hydrol; 2023 Mar; 254():104129. PubMed ID: 36634484
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transport and Attenuation of Particles of Different Density and Surface Charge: A Karst Aquifer Field Study.
    Schiperski F; Zirlewagen J; Scheytt T
    Environ Sci Technol; 2016 Aug; 50(15):8028-35. PubMed ID: 27348254
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Back to the future: Comparing yeast as an outmoded artificial tracer for simulating microbial transport in karst aquifer systems to more modern approaches.
    Vucinic L; O'Connell D; Coxon C; Gill L
    Environ Pollut; 2024 May; 349():123942. PubMed ID: 38604303
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multitracer experiment to evaluate the attenuation of selected organic micropollutants in a karst aquifer.
    Hillebrand O; Nödler K; Sauter M; Licha T
    Sci Total Environ; 2015 Feb; 506-507():338-43. PubMed ID: 25460968
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fluorescence-based multi-parameter approach to characterize dynamics of organic carbon, faecal bacteria and particles at alpine karst springs.
    Frank S; Goeppert N; Goldscheider N
    Sci Total Environ; 2018 Feb; 615():1446-1459. PubMed ID: 28935241
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improved understanding of particle transport in karst groundwater using natural sediments as tracers.
    Goeppert N; Goldscheider N
    Water Res; 2019 Dec; 166():115045. PubMed ID: 31526978
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification and Estimation of Solute Storage and Release in Karst Water Systems, South China.
    Zhang L; Luo M; Chen Z
    Int J Environ Res Public Health; 2020 Oct; 17(19):. PubMed ID: 33023167
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Numerical study of groundwater flow cycling controlled by seawater/freshwater interaction in a coastal karst aquifer through conduit network using CFPv2.
    Xu Z; Hu BX; Davis H; Kish S
    J Contam Hydrol; 2015 Nov; 182():131-45. PubMed ID: 26387032
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Migration and Transformation of Dissolved Organic Matter in Karst Water Systems and an Analysis of Their Influencing Factors].
    Zhang LK; Liu PY; Qin XQ; Shan XJ; Liu W; Zhao ZH; Yao X; Shao MY
    Huan Jing Ke Xue; 2018 May; 39(5):2104-2116. PubMed ID: 29965510
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Solute and colloid transport in karst conduits under low- and high-flow conditions.
    Göppert N; Goldscheider N
    Ground Water; 2008; 46(1):61-8. PubMed ID: 18181865
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Migration of uranium(IV)/(VI) in the presence of humic acids in quartz sand: a laboratory column study.
    Mibus J; Sachs S; Pfingsten W; Nebelung C; Bernhard G
    J Contam Hydrol; 2007 Jan; 89(3-4):199-217. PubMed ID: 17052798
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Experimental field evidence for transport of microplastic tracers over large distances in an alluvial aquifer.
    Goeppert N; Goldscheider N
    J Hazard Mater; 2021 Apr; 408():124844. PubMed ID: 33383455
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Occurrence and transport of pharmaceuticals in a karst groundwater system affected by domestic wastewater treatment plants.
    Einsiedl F; Radke M; Maloszewski P
    J Contam Hydrol; 2010 Sep; 117(1-4):26-36. PubMed ID: 20621388
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A modified and rapid method for the single-well push-pull (SWPP) test using SF
    Joun WT; Lee KK; Ha SW; Lee SS; Kim Y; Do HK; Jun SC; Kim Y; Ju Y
    Water Res; 2023 Jun; 236():119955. PubMed ID: 37087918
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of the attenuation potential of a karst aquifer by an artificial dualtracer experiment with caffeine.
    Hillebrand O; Nödler K; Licha T; Sauter M; Geyer T
    Water Res; 2012 Oct; 46(16):5381-8. PubMed ID: 22877878
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Physicochemical parameters and phytoplankton as indicators of the aquatic environment in karstic springs of South China.
    Guo F; Jiang G; Zhao H; Polk J; Liu S
    Sci Total Environ; 2019 Apr; 659():74-83. PubMed ID: 30597471
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Groundwater sampling in karst terranes: passive sampling in comparison to event-driven sampling strategy.
    Field MS
    Hydrogeol J; 2020 Oct; 29():. PubMed ID: 34349609
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.