These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

247 related articles for article (PubMed ID: 32390569)

  • 1. Correlations of Calf Muscle Macrophage Content With Muscle Properties and Walking Performance in Peripheral Artery Disease.
    Kosmac K; Gonzalez-Freire M; McDermott MM; White SH; Walton RG; Sufit RL; Tian L; Li L; Kibbe MR; Criqui MH; Guralnik JM; S Polonsky T; Leeuwenburgh C; Ferrucci L; Peterson CA
    J Am Heart Assoc; 2020 May; 9(10):e015929. PubMed ID: 32390569
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Associations of Peripheral Artery Disease With Calf Skeletal Muscle Mitochondrial DNA Heteroplasmy.
    Gonzalez-Freire M; Moore AZ; Peterson CA; Kosmac K; McDermott MM; Sufit RL; Guralnik JM; Polonsky T; Tian L; Kibbe MR; Criqui MH; Li L; Leeuwenburgh C; Ferrucci L
    J Am Heart Assoc; 2020 Apr; 9(7):e015197. PubMed ID: 32200714
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Walking performance is positively correlated to calf muscle fiber size in peripheral artery disease subjects, but fibers show aberrant mitophagy: an observational study.
    White SH; McDermott MM; Sufit RL; Kosmac K; Bugg AW; Gonzalez-Freire M; Ferrucci L; Tian L; Zhao L; Gao Y; Kibbe MR; Criqui MH; Leeuwenburgh C; Peterson CA
    J Transl Med; 2016 Sep; 14(1):284. PubMed ID: 27687713
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Skeletal Muscle Pathology in Peripheral Artery Disease: A Brief Review.
    McDermott MM; Ferrucci L; Gonzalez-Freire M; Kosmac K; Leeuwenburgh C; Peterson CA; Saini S; Sufit R
    Arterioscler Thromb Vasc Biol; 2020 Nov; 40(11):2577-2585. PubMed ID: 32938218
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Peripheral artery disease, calf skeletal muscle mitochondrial DNA copy number, and functional performance.
    McDermott MM; Peterson CA; Sufit R; Ferrucci L; Guralnik JM; Kibbe MR; Polonsky TS; Tian L; Criqui MH; Zhao L; Stein JH; Li L; Leeuwenburgh C
    Vasc Med; 2018 Aug; 23(4):340-348. PubMed ID: 29734865
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mitochondrial DNA damage in calf skeletal muscle and walking performance in people with peripheral artery disease.
    Saini SK; McDermott MM; Picca A; Li L; Wohlgemuth SE; Kosmac K; Peterson CA; Tian L; Ferrucci L; Guralnik JM; Sufit RL; Leeuwenburgh C
    Free Radic Biol Med; 2020 Nov; 160():680-689. PubMed ID: 32911084
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Abnormal accumulation of desmin in gastrocnemius myofibers of patients with peripheral artery disease: associations with altered myofiber morphology and density, mitochondrial dysfunction and impaired limb function.
    Koutakis P; Miserlis D; Myers SA; Kim JK; Zhu Z; Papoutsi E; Swanson SA; Haynatzki G; Ha DM; Carpenter LA; McComb RD; Johanning JM; Casale GP; Pipinos II
    J Histochem Cytochem; 2015 Apr; 63(4):256-69. PubMed ID: 25575565
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamic muscle quality of the plantar flexors is impaired in claudicant patients with peripheral arterial disease and associated with poorer walking endurance.
    King S; Vanicek N; O'Brien TD
    J Vasc Surg; 2015 Sep; 62(3):689-97. PubMed ID: 25953022
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Associations of Poly (ADP-Ribose) Polymerase1 abundance in calf skeletal muscle with walking performance in peripheral artery disease.
    Saini SK; Li L; Peek CB; Kosmac K; Polonsky TS; Tian L; Criqui MH; Ferrucci L; Guralnik JM; Kibbe M; Sufit RL; Leeuwenburgh C; McDermott MM
    Exp Gerontol; 2020 Oct; 140():111048. PubMed ID: 32755612
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cocoa to Improve Walking Performance in Older People With Peripheral Artery Disease: The COCOA-PAD Pilot Randomized Clinical Trial.
    McDermott MM; Criqui MH; Domanchuk K; Ferrucci L; Guralnik JM; Kibbe MR; Kosmac K; Kramer CM; Leeuwenburgh C; Li L; Lloyd-Jones D; Peterson CA; Polonsky TS; Stein JH; Sufit R; Van Horn L; Villarreal F; Zhang D; Zhao L; Tian L
    Circ Res; 2020 Feb; 126(5):589-599. PubMed ID: 32078436
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Preliminary evidence that low ankle-brachial index is associated with reduced bilateral hip extensor strength and functional mobility in peripheral arterial disease.
    Parmenter BJ; Raymond J; Dinnen PJ; Lusby RJ; Fiatarone Singh MA
    J Vasc Surg; 2013 Apr; 57(4):963-973.e1. PubMed ID: 23246081
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Vitamin D status and functional performance in peripheral artery disease.
    McDermott MM; Liu K; Ferrucci L; Tian L; Guralnik J; Kopp P; Tao H; Van Horn L; Liao Y; Green D; Kibbe M; Criqui MH
    Vasc Med; 2012 Oct; 17(5):294-302. PubMed ID: 22814997
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Skeletal muscle capillary density is related to anaerobic threshold and claudication in peripheral artery disease.
    Duscha BD; Kraus WE; Jones WS; Robbins JL; Piner LW; Huffman KM; Allen JD; Annex BH
    Vasc Med; 2020 Oct; 25(5):411-418. PubMed ID: 32841100
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Skeletal muscle phenotype is associated with exercise tolerance in patients with peripheral arterial disease.
    Askew CD; Green S; Walker PJ; Kerr GK; Green AA; Williams AD; Febbraio MA
    J Vasc Surg; 2005 May; 41(5):802-7. PubMed ID: 15886664
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Association between calf muscle oxygen saturation with ambulatory function and quality of life in symptomatic patients with peripheral artery disease.
    Gardner AW; Montgomery PS; Wang M; Shen B
    J Vasc Surg; 2020 Aug; 72(2):632-642. PubMed ID: 32081480
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Walking Exercise Therapy Effects on Lower Extremity Skeletal Muscle in Peripheral Artery Disease.
    McDermott MM; Dayanidhi S; Kosmac K; Saini S; Slysz J; Leeuwenburgh C; Hartnell L; Sufit R; Ferrucci L
    Circ Res; 2021 Jun; 128(12):1851-1867. PubMed ID: 34110902
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Antiangiogenic VEGF
    Ganta VC; Choi M; Farber CR; Annex BH
    Circulation; 2019 Jan; 139(2):226-242. PubMed ID: 30586702
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of Granulocyte-Macrophage Colony-Stimulating Factor With or Without Supervised Exercise on Walking Performance in Patients With Peripheral Artery Disease: The PROPEL Randomized Clinical Trial.
    McDermott MM; Ferrucci L; Tian L; Guralnik JM; Lloyd-Jones D; Kibbe MR; Polonsky TS; Domanchuk K; Stein JH; Zhao L; Taylor D; Skelly C; Pearce W; Perlman H; McCarthy W; Li L; Gao Y; Sufit R; Bloomfield CL; Criqui MH
    JAMA; 2017 Dec; 318(21):2089-2098. PubMed ID: 29141087
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Greater sedentary hours and slower walking speed outside the home predict faster declines in functioning and adverse calf muscle changes in peripheral arterial disease.
    McDermott MM; Liu K; Ferrucci L; Tian L; Guralnik JM; Liao Y; Criqui MH
    J Am Coll Cardiol; 2011 Jun; 57(23):2356-64. PubMed ID: 21636037
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Attendance at Supervised Exercise Sessions and Walking Outcomes in Peripheral Artery Disease: Results From 2 Randomized Clinical Trials.
    Hammond MM; Tian L; Zhao L; Zhang D; McDermott MM
    J Am Heart Assoc; 2022 Dec; 11(24):e026136. PubMed ID: 36533626
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.