These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 32390818)

  • 1. Contextual Integration in Cortical and Convolutional Neural Networks.
    Iyer R; Hu B; Mihalas S
    Front Comput Neurosci; 2020; 14():31. PubMed ID: 32390818
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pattern completion and disruption characterize contextual modulation in the visual cortex.
    Fu J; Shrinivasan S; Baroni L; Ding Z; Fahey PG; Pierzchlewicz P; Ponder K; Froebe R; Ntanavara L; Muhammad T; Willeke KF; Wang E; Ding Z; Tran DT; Papadopoulos S; Patel S; Reimer J; Ecker AS; Pitkow X; Antolik J; Sinz FH; Haefner RM; Tolias AS; Franke K
    bioRxiv; 2024 May; ():. PubMed ID: 36993321
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Learning shapes cortical dynamics to enhance integration of relevant sensory input.
    Chadwick A; Khan AG; Poort J; Blot A; Hofer SB; Mrsic-Flogel TD; Sahani M
    Neuron; 2023 Jan; 111(1):106-120.e10. PubMed ID: 36283408
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure, dynamics, coding and optimal biophysical parameters of efficient excitatory-inhibitory spiking networks.
    Koren V; Malerba SB; Schwalger T; Panzeri S
    bioRxiv; 2024 Apr; ():. PubMed ID: 38712237
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Excitation creates a distributed pattern of cortical suppression due to varied recurrent input.
    O'Rawe JF; Zhou Z; Li AJ; LaFosse PK; Goldbach HC; Histed MH
    Neuron; 2023 Dec; 111(24):4086-4101.e5. PubMed ID: 37865083
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spiking networks that efficiently process dynamic sensory features explain receptor information mixing in somatosensory cortex.
    Koren V; Emanuel AJ; Panzeri S
    bioRxiv; 2024 Jun; ():. PubMed ID: 38895477
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Probabilistic inference in discrete spaces can be implemented into networks of LIF neurons.
    Probst D; Petrovici MA; Bytschok I; Bill J; Pecevski D; Schemmel J; Meier K
    Front Comput Neurosci; 2015; 9():13. PubMed ID: 25729361
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cell-type-specific inhibitory circuitry from a connectomic census of mouse visual cortex.
    Schneider-Mizell CM; Bodor AL; Brittain D; Buchanan J; Bumbarger DJ; Elabbady L; Gamlin C; Kapner D; Kinn S; Mahalingam G; Seshamani S; Suckow S; Takeno M; Torres R; Yin W; Dorkenwald S; Bae JA; Castro MA; Halageri A; Jia Z; Jordan C; Kemnitz N; Lee K; Li K; Lu R; Macrina T; Mitchell E; Mondal SS; Mu S; Nehoran B; Popovych S; Silversmith W; Turner NL; Wong W; Wu J; ; Reimer J; Tolias AS; Seung HS; Reid RC; Collman F; Maçarico da Costa N
    bioRxiv; 2024 Jan; ():. PubMed ID: 36747710
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stimulation-mediated reverse engineering of silent neural networks.
    Ren X; Bok I; Vareberg A; Hai A
    J Neurophysiol; 2023 Jun; 129(6):1505-1514. PubMed ID: 37222450
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Brain orchestra under spontaneous conditions: Identifying communication modules from the functional architecture of area V1.
    Papadopouli M; Smyrnakis I; Koniotakis E; Savaglio MA; Brozi C; Psilou E; Palagina G; Smirnakis SM
    bioRxiv; 2024 Apr; ():. PubMed ID: 38496414
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Emergent human-like covert attention in feedforward convolutional neural networks.
    Srivastava S; Wang WY; Eckstein MP
    Curr Biol; 2024 Feb; 34(3):579-593.e12. PubMed ID: 38244541
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Convolutional neural network models of neuronal responses in macaque V1 reveal limited non-linear processing.
    Miao HY; Tong F
    bioRxiv; 2023 Aug; ():. PubMed ID: 37693397
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stimulus-Driven and Spontaneous Dynamics in Excitatory-Inhibitory Recurrent Neural Networks for Sequence Representation.
    Rajakumar A; Rinzel J; Chen ZS
    Neural Comput; 2021 Sep; 33(10):2603-2645. PubMed ID: 34530451
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lateral Connections Improve Generalizability of Learning in a Simple Neural Network.
    Crutcher G
    Neural Comput; 2024 Mar; 36(4):705-717. PubMed ID: 38457747
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Configurable Event-Driven Convolutional Node with Rate Saturation Mechanism for Modular ConvNet Systems Implementation.
    Camuñas-Mesa LA; Domínguez-Cordero YL; Linares-Barranco A; Serrano-Gotarredona T; Linares-Barranco B
    Front Neurosci; 2018; 12():63. PubMed ID: 29515349
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The mechanics of correlated variability in segregated cortical excitatory subnetworks.
    Negrón A; Getz MP; Handy G; Doiron B
    bioRxiv; 2023 Apr; ():. PubMed ID: 37162867
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Architecture of the brain's visual system enhances network stability and performance through layers, delays, and feedback.
    Velarde OM; Makse HA; Parra LC
    PLoS Comput Biol; 2023 Nov; 19(11):e1011078. PubMed ID: 37948463
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Competition improves robustness against loss of information.
    Kermani Kolankeh A; Teichmann M; Hamker FH
    Front Comput Neurosci; 2015; 9():35. PubMed ID: 25859211
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Bayesian Decoder Representing Single-Directional Connectivity between Neurons in Brain-Machine Interface.
    Chen S; Wang Y
    Annu Int Conf IEEE Eng Med Biol Soc; 2023 Jul; 2023():1-4. PubMed ID: 38083050
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impact of higher order network structure on emergent cortical activity.
    Nolte M; Gal E; Markram H; Reimann MW
    Netw Neurosci; 2020; 4(1):292-314. PubMed ID: 32181420
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.