These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 32390872)

  • 1. Double-Step Paradigm in Microgravity: Preservation of Sensorimotor Flexibility in Altered Gravitational Force Field.
    Bringoux L; Macaluso T; Sainton P; Chomienne L; Buloup F; Mouchnino L; Simoneau M; Blouin J
    Front Physiol; 2020; 11():377. PubMed ID: 32390872
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sensorimotor Reorganizations of Arm Kinematics and Postural Strategy for Functional Whole-Body Reaching Movements in Microgravity.
    Macaluso T; Bourdin C; Buloup F; Mille ML; Sainton P; Sarlegna FR; Vercher JL; Bringoux L
    Front Physiol; 2017; 8():821. PubMed ID: 29104544
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of gravity-like torque on goal-directed arm movements in microgravity.
    Bringoux L; Blouin J; Coyle T; Ruget H; Mouchnino L
    J Neurophysiol; 2012 May; 107(9):2541-8. PubMed ID: 22298835
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of Simulated Microgravity and Hypergravity Conditions on Arm Movements in Normogravity.
    Jamšek M; Kunavar T; Blohm G; Nozaki D; Papaxanthis C; White O; Babič J
    Front Neural Circuits; 2021; 15():750176. PubMed ID: 34970122
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Online corrective responses following target jump in altered gravitoinertial force field point to nested feedforward and feedback control.
    Chomienne L; Blouin J; Bringoux L
    J Neurophysiol; 2021 Jan; 125(1):154-165. PubMed ID: 33174494
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of Local Gravity Compensation on Motor Control During Altered Environmental Gravity.
    Kunavar T; Jamšek M; Barbiero M; Blohm G; Nozaki D; Papaxanthis C; White O; Babič J
    Front Neural Circuits; 2021; 15():750267. PubMed ID: 34744639
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Distinct adaptation patterns between grip dynamics and arm kinematics when the body is upside-down.
    Opsomer L; Crevecoeur F; Thonnard JL; McIntyre J; Lefèvre P
    J Neurophysiol; 2021 Mar; 125(3):862-874. PubMed ID: 33656927
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kinematic and dynamic processes for the control of pointing movements in humans revealed by short-term exposure to microgravity.
    Papaxanthis C; Pozzo T; McIntyre J
    Neuroscience; 2005; 135(2):371-83. PubMed ID: 16125854
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The timing of control signals underlying fast point-to-point arm movements.
    Ghafouri M; Feldman AG
    Exp Brain Res; 2001 Apr; 137(3-4):411-23. PubMed ID: 11355386
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Moving weightless objects. Grip force control during microgravity.
    Hermsdörfer J; Marquardt C; Philipp J; Zierdt A; Nowak D; Glasauer S; Mai N
    Exp Brain Res; 2000 May; 132(1):52-64. PubMed ID: 10836635
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Integration of gravitational torques in cerebellar pathways allows for the dynamic inverse computation of vertical pointing movements of a robot arm.
    Gentili RJ; Papaxanthis C; Ebadzadeh M; Eskiizmirliler S; Ouanezar S; Darlot C
    PLoS One; 2009; 4(4):e5176. PubMed ID: 19384420
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pointing in 3D space to remembered targets. II. Effects of movement speed toward kinesthetically defined targets.
    Adamovich SV; Berkinblit MB; Fookson O; Poizner H
    Exp Brain Res; 1999 Mar; 125(2):200-10. PubMed ID: 10204772
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Shift in arm-pointing movements during gravity changes produced by aircraft parabolic flight.
    Chen Y; Mori S; Koga K; Ohta Y; Wada Y; Tanaka M
    Biol Sci Space; 1999 Jun; 13(2):77-81. PubMed ID: 11542494
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Postural adjustments for online corrections of arm movements in standing humans.
    Leonard JA; Gritsenko V; Ouckama R; Stapley PJ
    J Neurophysiol; 2011 May; 105(5):2375-88. PubMed ID: 21346210
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The temporal structure of vertical arm movements.
    Gaveau J; Papaxanthis C
    PLoS One; 2011; 6(7):e22045. PubMed ID: 21765935
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kinematic synergy adaptation to microgravity during forward trunk movement.
    Vernazza-Martin S; Martin N; Massion J
    J Neurophysiol; 2000 Jan; 83(1):453-64. PubMed ID: 10634887
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pointing arm movements in short- and long-term spaceflights.
    Berger M; Mescheriakov S; Molokanova E; Lechner-Steinleitner S; Seguer N; Kozlovskaya I
    Aviat Space Environ Med; 1997 Sep; 68(9):781-7. PubMed ID: 9293345
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sensorimotor adaptation of point-to-point arm movements after spaceflight: the role of internal representation of gravity force in trajectory planning.
    Gaveau J; Paizis C; Berret B; Pozzo T; Papaxanthis C
    J Neurophysiol; 2011 Aug; 106(2):620-9. PubMed ID: 21562193
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The representation of gravitational force during drawing movements of the arm.
    Papaxanthis C; Pozzo T; Vinter A; Grishin A
    Exp Brain Res; 1998 May; 120(2):233-42. PubMed ID: 9629965
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Coordinated turn-and-reach movements. I. Anticipatory compensation for self-generated coriolis and interaction torques.
    Pigeon P; Bortolami SB; DiZio P; Lackner JR
    J Neurophysiol; 2003 Jan; 89(1):276-89. PubMed ID: 12522179
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.