These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
152 related articles for article (PubMed ID: 32390996)
1. Optimized Production of Xylanase by Sunkar B; Kannoju B; Bhukya B Front Microbiol; 2020; 11():772. PubMed ID: 32390996 [TBL] [Abstract][Full Text] [Related]
2. Enhanced production of xylanase by solid state fermentation using Trichoderma koeningi isolate: effect of pretreated agro-residues. Bandikari R; Poondla V; Obulam VS 3 Biotech; 2014 Dec; 4(6):655-664. PubMed ID: 28324314 [TBL] [Abstract][Full Text] [Related]
3. Xylanase production by Aureobasidium pullulans on globe artichoke stem: Bioprocess optimization, enzyme characterization and application in saccharification of lignocellulosic biomass. Yegin S Prep Biochem Biotechnol; 2017 May; 47(5):441-449. PubMed ID: 27537074 [TBL] [Abstract][Full Text] [Related]
4. Optimization of phytase production by Penicillium purpurogenum GE1 under solid state fermentation by using Box-Behnken design. Awad GE; Helal MM; Danial EN; Esawy MA Saudi J Biol Sci; 2014 Jan; 21(1):81-8. PubMed ID: 24596503 [TBL] [Abstract][Full Text] [Related]
5. Process optimization for simultaneous production of cellulase, xylanase and ligninase by Amadi OC; Egong EJ; Nwagu TN; Okpala G; Onwosi CO; Chukwu GC; Okolo BN; Agu RC; Moneke AN Heliyon; 2020 Jul; 6(7):e04566. PubMed ID: 32775729 [TBL] [Abstract][Full Text] [Related]
6. Optimization of xylanase from Pseudomonas mohnii isolated from Simlipal Biosphere Reserve, Odisha, using response surface methodology. Paul M; Nayak DP; Thatoi H J Genet Eng Biotechnol; 2020 Dec; 18(1):81. PubMed ID: 33306167 [TBL] [Abstract][Full Text] [Related]
7. Production and characterization of multi-polysaccharide degrading enzymes from Aspergillus aculeatus BCC199 for saccharification of agricultural residues. Suwannarangsee S; Arnthong J; Eurwilaichitr L; Champreda V J Microbiol Biotechnol; 2014 Oct; 24(10):1427-37. PubMed ID: 25001556 [TBL] [Abstract][Full Text] [Related]
8. Monascus pigment production by solid-state fermentation with corn cob substrate. Velmurugan P; Hur H; Balachandar V; Kamala-Kannan S; Lee KJ; Lee SM; Chae JC; Shea PJ; Oh BT J Biosci Bioeng; 2011 Dec; 112(6):590-4. PubMed ID: 21906997 [TBL] [Abstract][Full Text] [Related]
9. Comprehensive studies on optimization of cellulase and xylanase production by a local indigenous fungus strain via solid state fermentation using oil palm frond as substrate. Tai WY; Tan JS; Lim V; Lee CK Biotechnol Prog; 2019 May; 35(3):e2781. PubMed ID: 30701709 [TBL] [Abstract][Full Text] [Related]
10. Enhanced production of xylanase by Ramanjaneyulu G; Sridevi A; Seshapani P; Ramya A; Dileep Kumar K; Praveen Kumar Reddy G; Rajasekhar Reddy B 3 Biotech; 2017 Oct; 7(5):351. PubMed ID: 28955648 [TBL] [Abstract][Full Text] [Related]
11. Optimization of growth conditions for xylanase production by Aspergillus niger in solid state fermentation. Kavya V; Padmavathi T Pol J Microbiol; 2009; 58(2):125-30. PubMed ID: 19824396 [TBL] [Abstract][Full Text] [Related]
12. Profiling and production of hemicellulases by thermophilic fungus Malbranchea flava and the role of xylanases in improved bioconversion of pretreated lignocellulosics to ethanol. Sharma M; Mahajan C; Bhatti MS; Chadha BS 3 Biotech; 2016 Jun; 6(1):30. PubMed ID: 28330103 [TBL] [Abstract][Full Text] [Related]
13. Ethanol production by simultaneous saccharification and cofermentation of pretreated corn stalk. Zhao W; Zhao F; Zhang S; Gong Q; Chen G J Basic Microbiol; 2019 Jul; 59(7):744-753. PubMed ID: 31087563 [TBL] [Abstract][Full Text] [Related]
14. Thermostable Xylanase Production by Bibra M; Kunreddy VR; Sani RK Microorganisms; 2018 Sep; 6(3):. PubMed ID: 30189618 [TBL] [Abstract][Full Text] [Related]
15. Biosynthesis, molecular modeling and statistical optimization of xylanase from a mangrove associated actinobacterium Streptomyces variabilis (MAB3) using Box-Behnken design with its bioconversion efficacy. Sanjivkumar M; Silambarasan T; Balagurunathan R; Immanuel G Int J Biol Macromol; 2018 Oct; 118(Pt A):195-208. PubMed ID: 29909037 [TBL] [Abstract][Full Text] [Related]
16. Production of xylanase by Fasiku SA; Bello MA; Odeniyi OA Access Microbiol; 2023; 5(6):. PubMed ID: 37424564 [TBL] [Abstract][Full Text] [Related]
17. Xylanase production from Bacillus aerophilus KGJ2 and its application in xylooligosaccharides preparation. Gowdhaman D; Manaswini VS; Jayanthi V; Dhanasri M; Jeyalakshmi G; Gunasekar V; Sugumaran KR; Ponnusami V Int J Biol Macromol; 2014 Mar; 64():90-8. PubMed ID: 24296408 [TBL] [Abstract][Full Text] [Related]
18. Co-valorization of corn cobs and dairy wastewater for simultaneous saccharification and lactic acid production: Process optimization and kinetic assessment. Naomi David A; Sewsynker-Sukai Y; Gueguim Kana EB Bioresour Technol; 2022 Mar; 348():126815. PubMed ID: 35134524 [TBL] [Abstract][Full Text] [Related]
19. Multi-Objective Optimization Through Machine Learning Modeling for Production of Xylooligosaccharides from Alkali-Pretreated Corn-Cob Xylan Via Enzymatic Hydrolysis. Khangwal I; Chhabra D; Shukla P Indian J Microbiol; 2021 Dec; 61(4):458-466. PubMed ID: 34744201 [TBL] [Abstract][Full Text] [Related]
20. Xylanase production from Thermomyces lanuginosus VAPS-24 using low cost agro-industrial residues via hybrid optimization tools and its potential use for saccharification. Kumar V; Chhabra D; Shukla P Bioresour Technol; 2017 Nov; 243():1009-1019. PubMed ID: 28764103 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]