BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 32391151)

  • 1. Rentian scaling for the measurement of optimal embedding of complex networks into physical space.
    Sperry MM; Telesford QK; Klimm F; Bassett DS
    J Complex Netw; 2017 Jun; 5(2):199-218. PubMed ID: 32391151
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evidence of Rentian Scaling of Functional Modules in Diverse Biological Networks.
    How JJ; Navlakha S
    Neural Comput; 2018 Aug; 30(8):2210-2244. PubMed ID: 29894651
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fractured columnar small-world functional network organization in volumes of L2/3 of mouse auditory cortex.
    Bowen Z; Shilling-Scrivo K; Losert W; Kanold PO
    PNAS Nexus; 2024 Feb; 3(2):pgae074. PubMed ID: 38415223
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Efficient physical embedding of topologically complex information processing networks in brains and computer circuits.
    Bassett DS; Greenfield DL; Meyer-Lindenberg A; Weinberger DR; Moore SW; Bullmore ET
    PLoS Comput Biol; 2010 Apr; 6(4):e1000748. PubMed ID: 20421990
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fitting a geometric graph to a protein-protein interaction network.
    Higham DJ; Rasajski M; Przulj N
    Bioinformatics; 2008 Apr; 24(8):1093-9. PubMed ID: 18344248
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spatial network surrogates for disentangling complex system structure from spatial embedding of nodes.
    Wiedermann M; Donges JF; Kurths J; Donner RV
    Phys Rev E; 2016 Apr; 93():042308. PubMed ID: 27176313
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Context Attention Heterogeneous Network Embedding.
    Zhuo W; Zhan Q; Liu Y; Xie Z; Lu J
    Comput Intell Neurosci; 2019; 2019():8106073. PubMed ID: 31531010
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Temporal Network Embedding for Link Prediction via VAE Joint Attention Mechanism.
    Jiao P; Guo X; Jing X; He D; Wu H; Pan S; Gong M; Wang W
    IEEE Trans Neural Netw Learn Syst; 2022 Dec; 33(12):7400-7413. PubMed ID: 34106869
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evolving network representation learning based on random walks.
    Heidari F; Papagelis M
    Appl Netw Sci; 2020; 5(1):18. PubMed ID: 32215318
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Resolving structural variability in network models and the brain.
    Klimm F; Bassett DS; Carlson JM; Mucha PJ
    PLoS Comput Biol; 2014 Mar; 10(3):e1003491. PubMed ID: 24675546
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exploring the evolution of London's street network in the information space: a dual approach.
    Masucci AP; Stanilov K; Batty M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jan; 89(1):012805. PubMed ID: 24580279
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Damage spreading in spatial and small-world random Boolean networks.
    Lu Q; Teuscher C
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Feb; 89(2):022806. PubMed ID: 25353533
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Method Based on Temporal Embedding for the Pairwise Alignment of Dynamic Networks.
    Cinaglia P; Cannataro M
    Entropy (Basel); 2023 Apr; 25(4):. PubMed ID: 37190452
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The future of Cochrane Neonatal.
    Soll RF; Ovelman C; McGuire W
    Early Hum Dev; 2020 Nov; 150():105191. PubMed ID: 33036834
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deep Network Embedding for Graph Representation Learning in Signed Networks.
    Shen X; Chung FL
    IEEE Trans Cybern; 2020 Apr; 50(4):1556-1568. PubMed ID: 30307885
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Co-embedding of edges and nodes with deep graph convolutional neural networks.
    Zhou Y; Huo H; Hou Z; Bu L; Mao J; Wang Y; Lv X; Bu F
    Sci Rep; 2023 Oct; 13(1):16966. PubMed ID: 37807013
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multifractal scaling analyses of urban street network structure: The cases of twelve megacities in China.
    Long Y; Chen Y
    PLoS One; 2021; 16(2):e0246925. PubMed ID: 33600472
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multiscale core-periphery structure in a global liner shipping network.
    Kojaku S; Xu M; Xia H; Masuda N
    Sci Rep; 2019 Jan; 9(1):404. PubMed ID: 30674915
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identifying transition states of chemical kinetic systems using network embedding techniques.
    Mercurio P; Liu D
    Math Biosci Eng; 2020 Dec; 18(1):868-887. PubMed ID: 33525123
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.