These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
126 related articles for article (PubMed ID: 32391160)
1. Enabling long term monitoring of dopamine using dimensionally stable ultrananocrystalline diamond microelectrodes. Dutta G; Tan C; Siddiqui S; Arumugam PU Mater Res Express; 2016 Sep; 3(9):. PubMed ID: 32391160 [TBL] [Abstract][Full Text] [Related]
2. Surface Fouling of Ultrananocrystalline Diamond Microelectrodes during Dopamine Detection: Improving Lifetime via Electrochemical Cycling. Chang AY; Dutta G; Siddiqui S; Arumugam PU ACS Chem Neurosci; 2019 Jan; 10(1):313-322. PubMed ID: 30285418 [TBL] [Abstract][Full Text] [Related]
3. Nafion and Multiwall Carbon Nanotube Modified Ultrananocrystalline Diamond Microelectrodes for Detection of Dopamine and Serotonin. Chang AY; Siddiqui S; Arumugam PU Micromachines (Basel); 2021 May; 12(5):. PubMed ID: 34066363 [TBL] [Abstract][Full Text] [Related]
4. Evaluation of In Vitro Serotonin-Induced Electrochemical Fouling Performance of Boron Doped Diamond Microelectrode Using Fast-Scan Cyclic Voltammetry. Perillo ML; Gupta B; Siegenthaler JR; Christensen IE; Kepros B; Mitul A; Han M; Rechenberg R; Becker MF; Li W; Purcell EK Biosensors (Basel); 2024 Jul; 14(7):. PubMed ID: 39056628 [TBL] [Abstract][Full Text] [Related]
5. The effect of electrode size and surface heterogeneity on electrochemical properties of ultrananocrystalline diamond microelectrode. Dutta G; Siddiqui S; Zeng H; Carlisle JA; Arumugam PU J Electroanal Chem (Lausanne); 2015 Nov; 756():61-68. PubMed ID: 32280318 [TBL] [Abstract][Full Text] [Related]
6. All-Diamond Boron-Doped Microelectrodes for Neurochemical Sensing with Fast-Scan Cyclic Voltammetry. Gupta B; Kepros B; Landgraf JB; Becker MF; Li W; Purcell EK; Siegenthaler JR bioRxiv; 2024 Aug; ():. PubMed ID: 39211237 [TBL] [Abstract][Full Text] [Related]
7. Comparison and reappraisal of carbon electrodes for the voltammetric detection of dopamine. Patel AN; Tan SY; Miller TS; Macpherson JV; Unwin PR Anal Chem; 2013 Dec; 85(24):11755-64. PubMed ID: 24308368 [TBL] [Abstract][Full Text] [Related]
8. Detection of neurochemicals with enhanced sensitivity and selectivity via hybrid multiwall carbon nanotube-ultrananocrystalline diamond microelectrodes. Tan C; Dutta G; Yin H; Siddiqui S; Arumugam PU Sens Actuators B Chem; 2018 Apr; 258():193-203. PubMed ID: 32528220 [TBL] [Abstract][Full Text] [Related]
9. Analysis of Carbon-Based Microelectrodes for Neurochemical Sensing. Manciu FS; Oh Y; Barath A; Rusheen AE; Kouzani AZ; Hodges D; Guerrero J; Tomshine J; Lee KH; Bennet KE Materials (Basel); 2019 Sep; 12(19):. PubMed ID: 31569398 [TBL] [Abstract][Full Text] [Related]
10. In Vitro Biofouling Performance of Boron-Doped Diamond Microelectrodes for Serotonin Detection Using Fast-Scan Cyclic Voltammetry. Gupta B; Perillo ML; Siegenthaler JR; Christensen IE; Welch MP; Rechenberg R; Banna GMHU; Galstyan D; Becker MF; Li W; Purcell EK Biosensors (Basel); 2023 May; 13(6):. PubMed ID: 37366941 [TBL] [Abstract][Full Text] [Related]
11. Fabrication, characterization, and application of boron-doped diamond microelectrodes for in vivo dopamine detection. Suzuki A; Ivandini TA; Yoshimi K; Fujishima A; Oyama G; Nakazato T; Hattori N; Kitazawa S; Einaga Y Anal Chem; 2007 Nov; 79(22):8608-15. PubMed ID: 17918970 [TBL] [Abstract][Full Text] [Related]
12. 3D fuzzy graphene microelectrode array for dopamine sensing at sub-cellular spatial resolution. Castagnola E; Garg R; Rastogi SK; Cohen-Karni T; Cui XT Biosens Bioelectron; 2021 Nov; 191():113440. PubMed ID: 34171734 [TBL] [Abstract][Full Text] [Related]
13. In situ detection of dopamine using nitrogen incorporated diamond nanowire electrode. Shalini J; Sankaran KJ; Dong CL; Lee CY; Tai NH; Lin IN Nanoscale; 2013 Feb; 5(3):1159-67. PubMed ID: 23288048 [TBL] [Abstract][Full Text] [Related]
14. Monitoring the evolution of boron doped porous diamond electrode on flexible retinal implant by OCT and in vivo impedance spectroscopy. Hébert C; Cottance M; Degardin J; Scorsone E; Rousseau L; Lissorgues G; Bergonzo P; Picaud S Mater Sci Eng C Mater Biol Appl; 2016 Dec; 69():77-84. PubMed ID: 27612691 [TBL] [Abstract][Full Text] [Related]
15. Mitigating the Effects of Electrode Biofouling-Induced Impedance for Improved Long-Term Electrochemical Measurements In Vivo. Seaton BT; Hill DF; Cowen SL; Heien ML Anal Chem; 2020 May; 92(9):6334-6340. PubMed ID: 32298105 [TBL] [Abstract][Full Text] [Related]
16. Boron-doped diamond microelectrodes for use in capillary electrophoresis with electrochemical detection. Cvacka J; Quaiserová V; Park J; Show Y; Muck A; Swain GM Anal Chem; 2003 Jun; 75(11):2678-87. PubMed ID: 12948136 [TBL] [Abstract][Full Text] [Related]
17. Next-Generation Diamond Electrodes for Neurochemical Sensing: Challenges and Opportunities. Purcell EK; Becker MF; Guo Y; Hara SA; Ludwig KA; McKinney CJ; Monroe EM; Rechenberg R; Rusinek CA; Saxena A; Siegenthaler JR; Sortwell CE; Thompson CH; Trevathan JK; Witt S; Li W Micromachines (Basel); 2021 Jan; 12(2):. PubMed ID: 33530395 [TBL] [Abstract][Full Text] [Related]
18. Carbon nanotube fiber microelectrodes show a higher resistance to dopamine fouling. Harreither W; Trouillon R; Poulin P; Neri W; Ewing AG; Safina G Anal Chem; 2013 Aug; 85(15):7447-53. PubMed ID: 23789970 [TBL] [Abstract][Full Text] [Related]
19. Microfabrication, characterization and in vivo MRI compatibility of diamond microelectrodes array for neural interfacing. Hébert C; Warnking J; Depaulis A; Garçon LA; Mermoux M; Eon D; Mailley P; Omnès F Mater Sci Eng C Mater Biol Appl; 2015 Jan; 46():25-31. PubMed ID: 25491956 [TBL] [Abstract][Full Text] [Related]
20. Development of Conductive Boron-Doped Diamond Electrode: A microscopic, Spectroscopic, and Voltammetric Study. Bennet KE; Lee KH; Kruchowski JN; Chang SY; Marsh MP; Van Orsow AA; Paez A; Manciu FS Materials (Basel); 2013 Dec; 6(12):5726-5741. PubMed ID: 28788420 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]