These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 32391409)

  • 1. ONLINE FORECASTING OF COVID-19 CASES IN NIGERIA USING LIMITED DATA.
    Abdulmajeed K; Adeleke M; Popoola L
    Data Brief; 2020 Jun; 30():105683. PubMed ID: 32391409
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Time series prediction of under-five mortality rates for Nigeria: comparative analysis of artificial neural networks, Holt-Winters exponential smoothing and autoregressive integrated moving average models.
    Adeyinka DA; Muhajarine N
    BMC Med Res Methodol; 2020 Dec; 20(1):292. PubMed ID: 33267817
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Application of one-, three-, and seven-day forecasts during early onset on the COVID-19 epidemic dataset using moving average, autoregressive, autoregressive moving average, autoregressive integrated moving average, and naïve forecasting methods.
    Lynch CJ; Gore R
    Data Brief; 2021 Apr; 35():106759. PubMed ID: 33521186
    [TBL] [Abstract][Full Text] [Related]  

  • 4. COVID-19 prevalence estimation: Four most affected African countries.
    Lukman AF; Rauf RI; Abiodun O; Oludoun O; Ayinde K; Ogundokun RO
    Infect Dis Model; 2020; 5():827-838. PubMed ID: 33073068
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Forecasting COVID-19 confirmed cases, deaths and recoveries: Revisiting established time series modeling through novel applications for the USA and Italy.
    Gecili E; Ziady A; Szczesniak RD
    PLoS One; 2021; 16(1):e0244173. PubMed ID: 33411744
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Forecasting spread of COVID-19 using google trends: A hybrid GWO-deep learning approach.
    Prasanth S; Singh U; Kumar A; Tikkiwal VA; Chong PHJ
    Chaos Solitons Fractals; 2021 Jan; 142():110336. PubMed ID: 33110297
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impact of COVID-19 pandemic in the Brazilian maternal mortality ratio: A comparative analysis of Neural Networks Autoregression, Holt-Winters exponential smoothing, and Autoregressive Integrated Moving Average models.
    Cañedo MC; Lopes TIB; Rossato L; Nunes IB; Faccin ID; Salomé TM; Simionatto S
    PLoS One; 2024; 19(1):e0296064. PubMed ID: 38295029
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Empirical Evaluation of Alternative Time-Series Models for COVID-19 Forecasting in Saudi Arabia.
    Al-Turaiki I; Almutlaq F; Alrasheed H; Alballa N
    Int J Environ Res Public Health; 2021 Aug; 18(16):. PubMed ID: 34444409
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Forecasting the prevalence of COVID-19 outbreak in Egypt using nonlinear autoregressive artificial neural networks.
    Saba AI; Elsheikh AH
    Process Saf Environ Prot; 2020 Sep; 141():1-8. PubMed ID: 32501368
    [TBL] [Abstract][Full Text] [Related]  

  • 10. ARIMA modelling and forecasting of irregularly patterned COVID-19 outbreaks using Japanese and South Korean data.
    Duan X; Zhang X
    Data Brief; 2020 Aug; 31():105779. PubMed ID: 32537480
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Machine learning and automatic ARIMA/Prophet models-based forecasting of COVID-19: methodology, evaluation, and case study in SAARC countries.
    Sardar I; Akbar MA; Leiva V; Alsanad A; Mishra P
    Stoch Environ Res Risk Assess; 2023; 37(1):345-359. PubMed ID: 36217358
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Coronavirus (COVID-19) in Nigeria: Survival rate.
    Aronu CO; Ekwueme GO; Sol-Akubude VI; Okafor PN
    Sci Afr; 2021 Mar; 11():e00689. PubMed ID: 33392422
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modelling and forecasting of growth rate of new COVID-19 cases in top nine affected countries: Considering conditional variance and asymmetric effect.
    Ekinci A
    Chaos Solitons Fractals; 2021 Oct; 151():111227. PubMed ID: 34253942
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluating data-driven methods for short-term forecasts of cumulative SARS-CoV2 cases.
    Ahmad G; Ahmed F; Rizwan MS; Muhammad J; Fatima SH; Ikram A; Zeeb H
    PLoS One; 2021; 16(5):e0252147. PubMed ID: 34019581
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multiplicative Holts Winter Model for Trend Analysis and Forecasting of COVID-19 Spread in India.
    Swapnarekha H; Behera HS; Nayak J; Naik B; Kumar PS
    SN Comput Sci; 2021; 2(5):416. PubMed ID: 34423315
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Using the kalman filter with Arima for the COVID-19 pandemic dataset of Pakistan.
    Aslam M
    Data Brief; 2020 Aug; 31():105854. PubMed ID: 32572378
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Application of seasonal auto-regressive integrated moving average model in forecasting the incidence of hand-foot-mouth disease in Wuhan, China.
    Peng Y; Yu B; Wang P; Kong DG; Chen BH; Yang XB
    J Huazhong Univ Sci Technolog Med Sci; 2017 Dec; 37(6):842-848. PubMed ID: 29270741
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Forecasting the spread of the COVID-19 pandemic in Kenya using SEIR and ARIMA models.
    Kiarie J; Mwalili S; Mbogo R
    Infect Dis Model; 2022 Jun; 7(2):179-188. PubMed ID: 35633775
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Forecasting COVID-19 daily cases using phone call data.
    Rostami-Tabar B; Rendon-Sanchez JF
    Appl Soft Comput; 2021 Mar; 100():106932. PubMed ID: 33269029
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A comparative study for predictive monitoring of COVID-19 pandemic.
    Fatimah B; Aggarwal P; Singh P; Gupta A
    Appl Soft Comput; 2022 Jun; 122():108806. PubMed ID: 35431707
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.