BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 32391530)

  • 1. Two-dimensional C
    Rani S; Ray SJ
    Phys Chem Chem Phys; 2020 May; 22(20):11452-11459. PubMed ID: 32391530
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Detection of nucleobases on borophene nanosheet: A DFT investigation.
    Sabokdast S; Horri A; Azar YT; Momeni M; Tavakoli MB
    Bioelectrochemistry; 2021 Apr; 138():107721. PubMed ID: 33360587
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A DFT study on the adsorption of DNA nucleobases on the C
    Zhao J; Li W; Aslanzadeh SA
    J Mol Model; 2021 Jan; 27(2):57. PubMed ID: 33515354
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantum Simulation of the Silicene and Germanene for Sensing and Sequencing of DNA/RNA Nucleobases.
    Gürel HH; Salmankurt B
    Biosensors (Basel); 2021 Feb; 11(3):. PubMed ID: 33668284
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adsorption of DNA/RNA nucleobases on hexagonal boron nitride sheet: an ab initio study.
    Lin Q; Zou X; Zhou G; Liu R; Wu J; Li J; Duan W
    Phys Chem Chem Phys; 2011 Jul; 13(26):12225-30. PubMed ID: 21637870
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exploiting the optical sensing of fluorophore-tagged DNA nucleobases on hexagonal BN and Al-doped BN sheets: a computational study.
    Bhai S; Ganguly B
    Phys Chem Chem Phys; 2022 Jan; 24(2):829-841. PubMed ID: 34928284
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nucleobase-Bonded Graphene Nanoribbon Junctions: Electron Transport from First Principles.
    Huang Y; Altalhi T; Yakobson BI; Penev ES
    ACS Nano; 2022 Oct; 16(10):16736-16743. PubMed ID: 36198132
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Automated quantum chemistry based molecular dynamics simulations of electron ionization induced fragmentations of the nucleobases Uracil, Thymine, Cytosine, and Guanine.
    Grimme S; Bauer CA
    Eur J Mass Spectrom (Chichester); 2015; 21(3):125-40. PubMed ID: 26307693
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Graphene sculpturene nanopores for DNA nucleobase sensing.
    Sadeghi H; Algaragholy L; Pope T; Bailey S; Visontai D; Manrique D; Ferrer J; Garcia-Suarez V; Sangtarash S; Lambert CJ
    J Phys Chem B; 2014 Jun; 118(24):6908-14. PubMed ID: 24849015
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Vibrational investigation of nucleobases by means of divide and conquer semiclassical dynamics.
    Gabas F; Di Liberto G; Ceotto M
    J Chem Phys; 2019 Jun; 150(22):224107. PubMed ID: 31202241
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Physisorption of nucleobases on graphene: a comparative van der Waals study.
    Le D; Kara A; Schröder E; Hyldgaard P; Rahman TS
    J Phys Condens Matter; 2012 Oct; 24(42):424210. PubMed ID: 23032709
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Non-covalent interactions: complexes of guanidinium with DNA and RNA nucleobases.
    Blanco F; Kelly B; Sánchez-Sanz G; Trujillo C; Alkorta I; Elguero J; Rozas I
    J Phys Chem B; 2013 Oct; 117(39):11608-16. PubMed ID: 23992551
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nanoelectronic Heterodyne Sensor: A New Electronic Sensing Paradigm.
    Kulkarni GS; Zang W; Zhong Z
    Acc Chem Res; 2016 Nov; 49(11):2578-2586. PubMed ID: 27668314
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Measurements of single nucleotide electronic states as nanoelectronic fingerprints for identification of DNA nucleobases, their protonated and unprotonated states, isomers, and tautomers.
    Ribot JC; Chatterjee A; Nagpal P
    J Phys Chem B; 2015 Apr; 119(15):4968-74. PubMed ID: 25793310
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Binding of DNA nucleobases and nucleosides with graphene.
    Varghese N; Mogera U; Govindaraj A; Das A; Maiti PK; Sood AK; Rao CN
    Chemphyschem; 2009 Jan; 10(1):206-10. PubMed ID: 18814150
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Calculations of pKa's and redox potentials of nucleobases with explicit waters and polarizable continuum solvation.
    Thapa B; Schlegel HB
    J Phys Chem A; 2015 May; 119(21):5134-44. PubMed ID: 25291241
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A novel mass spectrometry method based on competitive non-covalent interaction for the detection of biomarkers.
    Han J; Li Y; Zhan L; Xue J; Sun J; Xiong C; Nie Z
    Chem Commun (Camb); 2018 Sep; 54(76):10726-10729. PubMed ID: 30187034
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Melting of nucleobases. Getting the cutting edge of "Walden's Rule".
    Abdelaziz A; Zaitsau DH; Kuratieva NV; Verevkin SP; Schick C
    Phys Chem Chem Phys; 2019 Jun; 21(24):12787-12797. PubMed ID: 30888011
    [TBL] [Abstract][Full Text] [Related]  

  • 19. First-principles characterization of the singlet excited state manifold in DNA/RNA nucleobases.
    Jaiswal VK; Segarra-Martí J; Marazzi M; Zvereva E; Assfeld X; Monari A; Garavelli M; Rivalta I
    Phys Chem Chem Phys; 2020 Jul; 22(27):15496-15508. PubMed ID: 32602504
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modified nucleobases.
    Matsika S
    Top Curr Chem; 2015; 355():209-43. PubMed ID: 24748343
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.