These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
132 related articles for article (PubMed ID: 32391552)
1. A steady-state approach for inhibition of heterogeneous enzyme reactions. Kari J; Schiano-di-Cola C; Hansen SF; Badino SF; Sørensen TH; Cavaleiro AM; Borch K; Westh P Biochem J; 2020 May; 477(10):1971-1982. PubMed ID: 32391552 [TBL] [Abstract][Full Text] [Related]
2. Rate-limiting step and substrate accessibility of cellobiohydrolase Cel6A from Trichoderma reesei. Christensen SJ; Kari J; Badino SF; Borch K; Westh P FEBS J; 2018 Dec; 285(23):4482-4493. PubMed ID: 30281909 [TBL] [Abstract][Full Text] [Related]
3. A practical approach to steady-state kinetic analysis of cellulases acting on their natural insoluble substrate. Kari J; Christensen SJ; Andersen M; Baiget SS; Borch K; Westh P Anal Biochem; 2019 Dec; 586():113411. PubMed ID: 31520594 [TBL] [Abstract][Full Text] [Related]
4. A quenched-flow system for measuring heterogeneous enzyme kinetics with sub-second time resolution. Olsen JP; Kari J; Borch K; Westh P Enzyme Microb Technol; 2017 Oct; 105():45-50. PubMed ID: 28756860 [TBL] [Abstract][Full Text] [Related]
5. Modeling the activity burst in the initial phase of cellulose hydrolysis by the processive cellobiohydrolase Cel7A. Petrášek Z; Eibinger M; Nidetzky B Biotechnol Bioeng; 2019 Mar; 116(3):515-525. PubMed ID: 30515756 [TBL] [Abstract][Full Text] [Related]
6. Discrimination among eight modified michaelis-menten kinetics models of cellulose hydrolysis with a large range of substrate/enzyme ratios: inhibition by cellobiose. Bezerra RM; Dias AA Appl Biochem Biotechnol; 2004 Mar; 112(3):173-84. PubMed ID: 15007185 [TBL] [Abstract][Full Text] [Related]
7. pH profiles of cellulases depend on the substrate and architecture of the binding region. Røjel N; Kari J; Sørensen TH; Borch K; Westh P Biotechnol Bioeng; 2020 Feb; 117(2):382-391. PubMed ID: 31631319 [TBL] [Abstract][Full Text] [Related]
8. In situ stability of substrate-associated cellulases studied by DSC. Alasepp K; Borch K; Cruys-Bagger N; Badino S; Jensen K; Sørensen TH; Windahl MS; Westh P Langmuir; 2014 Jun; 30(24):7134-42. PubMed ID: 24856176 [TBL] [Abstract][Full Text] [Related]
9. Effects of lytic polysaccharide monooxygenase oxidation on cellulose structure and binding of oxidized cellulose oligomers to cellulases. Vermaas JV; Crowley MF; Beckham GT; Payne CM J Phys Chem B; 2015 May; 119(20):6129-43. PubMed ID: 25785779 [TBL] [Abstract][Full Text] [Related]
10. Processive action of cellobiohydrolase Cel7A from Trichoderma reesei is revealed as 'burst' kinetics on fluorescent polymeric model substrates. Kipper K; Väljamäe P; Johansson G Biochem J; 2005 Jan; 385(Pt 2):527-35. PubMed ID: 15362979 [TBL] [Abstract][Full Text] [Related]
11. A steady-state theory for processive cellulases. Cruys-Bagger N; Elmerdahl J; Praestgaard E; Borch K; Westh P FEBS J; 2013 Aug; 280(16):3952-61. PubMed ID: 23786663 [TBL] [Abstract][Full Text] [Related]
12. Cellulose hydrolysis and binding with Trichoderma reesei Cel5A and Cel7A and their core domains in ionic liquid solutions. Wahlström R; Rahikainen J; Kruus K; Suurnäkki A Biotechnol Bioeng; 2014 Apr; 111(4):726-33. PubMed ID: 24258388 [TBL] [Abstract][Full Text] [Related]
13. A model explaining declining rate in hydrolysis of lignocellulose substrates with cellobiohydrolase I (cel7A) and endoglucanase I (cel7B) of Trichoderma reesei. Eriksson T; Karlsson J; Tjerneld F Appl Biochem Biotechnol; 2002 Apr; 101(1):41-60. PubMed ID: 12008866 [TBL] [Abstract][Full Text] [Related]
14. The accessible cellulose surface influences cellulase synergism during the hydrolysis of lignocellulosic substrates. Hu J; Gourlay K; Arantes V; Van Dyk JS; Pribowo A; Saddler JN ChemSusChem; 2015 Mar; 8(5):901-7. PubMed ID: 25607348 [TBL] [Abstract][Full Text] [Related]
15. Enzymatic kinetic of cellulose hydrolysis: inhibition by ethanol and cellobiose. Bezerra RM; Dias AA Appl Biochem Biotechnol; 2005 Jul; 126(1):49-59. PubMed ID: 16014998 [TBL] [Abstract][Full Text] [Related]
16. Two-parameter kinetic model based on a time-dependent activity coefficient accurately describes enzymatic cellulose digestion. Kostylev M; Wilson D Biochemistry; 2013 Aug; 52(33):5656-64. PubMed ID: 23837567 [TBL] [Abstract][Full Text] [Related]
17. Inhibition of the Trichoderma reesei cellulases by cellobiose is strongly dependent on the nature of the substrate. Gruno M; Väljamäe P; Pettersson G; Johansson G Biotechnol Bioeng; 2004 Jun; 86(5):503-11. PubMed ID: 15129433 [TBL] [Abstract][Full Text] [Related]
18. Direct kinetic comparison of the two cellobiohydrolases Cel6A and Cel7A from Hypocrea jecorina. Badino SF; Kari J; Christensen SJ; Borch K; Westh P Biochim Biophys Acta Proteins Proteom; 2017 Dec; 1865(12):1739-1745. PubMed ID: 28844741 [TBL] [Abstract][Full Text] [Related]
19. Dynamic interaction of Trichoderma reesei cellobiohydrolases Cel6A and Cel7A and cellulose at equilibrium and during hydrolysis. Palonen H; Tenkanen M; Linder M Appl Environ Microbiol; 1999 Dec; 65(12):5229-33. PubMed ID: 10583969 [TBL] [Abstract][Full Text] [Related]
20. A kinetic model for the burst phase of processive cellulases. Praestgaard E; Elmerdahl J; Murphy L; Nymand S; McFarland KC; Borch K; Westh P FEBS J; 2011 May; 278(9):1547-60. PubMed ID: 21371261 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]