These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

321 related articles for article (PubMed ID: 32391605)

  • 1. Opportunities and challenges for antisense oligonucleotide therapies.
    Kuijper EC; Bergsma AJ; Pijnappel WWMP; Aartsma-Rus A
    J Inherit Metab Dis; 2021 Jan; 44(1):72-87. PubMed ID: 32391605
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamics of co-transcriptional pre-mRNA folding influences the induction of dystrophin exon skipping by antisense oligonucleotides.
    Wee KB; Pramono ZA; Wang JL; MacDorman KF; Lai PS; Yee WC
    PLoS One; 2008 Mar; 3(3):e1844. PubMed ID: 18365002
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Guidelines for antisense oligonucleotide design and insight into splice-modulating mechanisms.
    Aartsma-Rus A; van Vliet L; Hirschi M; Janson AA; Heemskerk H; de Winter CL; de Kimpe S; van Deutekom JC; 't Hoen PA; van Ommen GJ
    Mol Ther; 2009 Mar; 17(3):548-53. PubMed ID: 18813282
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Designing Effective Antisense Oligonucleotides for Exon Skipping.
    Shimo T; Maruyama R; Yokota T
    Methods Mol Biol; 2018; 1687():143-155. PubMed ID: 29067661
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exonic sequences provide better targets for antisense oligonucleotides than splice site sequences in the modulation of Duchenne muscular dystrophy splicing.
    Aartsma-Rus A; Houlleberghs H; van Deutekom JC; van Ommen GJ; 't Hoen PA
    Oligonucleotides; 2010 Apr; 20(2):69-77. PubMed ID: 20377429
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional analysis of 114 exon-internal AONs for targeted DMD exon skipping: indication for steric hindrance of SR protein binding sites.
    Aartsma-Rus A; De Winter CL; Janson AA; Kaman WE; Van Ommen GJ; Den Dunnen JT; Van Deutekom JC
    Oligonucleotides; 2005 Dec; 15(4):284-97. PubMed ID: 16396622
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A prospective study in the rational design of efficient antisense oligonucleotides for exon skipping in the DMD gene.
    Pramono ZA; Wee KB; Wang JL; Chen YJ; Xiong QB; Lai PS; Yee WC
    Hum Gene Ther; 2012 Jul; 23(7):781-90. PubMed ID: 22486275
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Antisense oligonuclotides with oxetane-constrained cytidine enhance heteroduplex stability, and elicit satisfactory RNase H response as well as showing improved resistance to both exo and endonucleases.
    Pradeepkumar PI; Amirkhanov NV; Chattopadhyaya J
    Org Biomol Chem; 2003 Jan; 1(1):81-92. PubMed ID: 12929393
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The therapeutic potential of antisense-mediated exon skipping.
    van Ommen GJ; van Deutekom J; Aartsma-Rus A
    Curr Opin Mol Ther; 2008 Apr; 10(2):140-9. PubMed ID: 18386226
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Antisense Oligonucleotide Design and Evaluation of Splice-Modulating Properties Using Cell-Based Assays.
    Slijkerman R; Kremer H; van Wijk E
    Methods Mol Biol; 2018; 1828():519-530. PubMed ID: 30171565
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of Exon Inclusion Induced by Splice Switching Antisense Oligonucleotides in SMA Patient Fibroblasts.
    Maruyama R; Touznik A; Yokota T
    J Vis Exp; 2018 May; (135):. PubMed ID: 29806836
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Antisense Oligonucleotide-Based Rescue of Complex Intronic Splicing Defects in
    Corradi Z; Hitti-Malin RJ; de Rooij LA; Garanto A; Collin RWJ; Cremers FPM
    Nucleic Acid Ther; 2024; 34(3):125-133. PubMed ID: 38800942
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fine tuning of electrostatics around the internucleotidic phosphate through incorporation of modified 2',4'-carbocyclic-LNAs and -ENAs leads to significant modulation of antisense properties.
    Zhou C; Liu Y; Andaloussi M; Badgujar N; Plashkevych O; Chattopadhyaya J
    J Org Chem; 2009 Jan; 74(1):118-34. PubMed ID: 19055352
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Overview on AON design.
    Aartsma-Rus A
    Methods Mol Biol; 2012; 867():117-29. PubMed ID: 22454058
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Therapeutic modulation of DMD splicing by blocking exonic splicing enhancer sites with antisense oligonucleotides.
    Aartsma-Rus A; Janson AA; Heemskerk JA; De Winter CL; Van Ommen GJ; Van Deutekom JC
    Ann N Y Acad Sci; 2006 Oct; 1082():74-6. PubMed ID: 17145928
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Antisense oligonucleotide-mediated exon skipping of CHRNA1 pre-mRNA as potential therapy for Congenital Myasthenic Syndromes.
    Tei S; Ishii HT; Mitsuhashi H; Ishiura S
    Biochem Biophys Res Commun; 2015 Jun; 461(3):481-6. PubMed ID: 25888793
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Pharmacokinetics of 2'-
    Bosgra S; Sipkens J; de Kimpe S; den Besten C; Datson N; van Deutekom J
    Nucleic Acid Ther; 2019 Dec; 29(6):305-322. PubMed ID: 31429628
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Antisense Oligonucleotide Screening to Optimize the Rescue of the Splicing Defect Caused by the Recurrent Deep-Intronic
    Garanto A; Duijkers L; Tomkiewicz TZ; Collin RWJ
    Genes (Basel); 2019 Jun; 10(6):. PubMed ID: 31197102
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Double sugar and phosphate backbone-constrained nucleotides: synthesis, structure, stability, and their incorporation into oligodeoxynucleotides.
    Zhou C; Plashkevych O; Chattopadhyaya J
    J Org Chem; 2009 May; 74(9):3248-65. PubMed ID: 19348480
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Use of Tricyclo-DNA Antisense Oligonucleotides for Exon Skipping.
    Relizani K; Goyenvalle A
    Methods Mol Biol; 2018; 1828():381-394. PubMed ID: 30171555
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.