BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 32391678)

  • 1. Wireless Charging Electrochemiluminescence System for Ionic Channel Manipulation in Living Cells.
    Peng K; Liu S; Lv F; Fu X; Hussain S; Zhao H; Liu L; Wang S
    ACS Appl Mater Interfaces; 2020 Jun; 12(22):24655-24661. PubMed ID: 32391678
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intracellular Wireless Analysis of Single Cells by Bipolar Electrochemiluminescence Confined in a Nanopipette.
    Wang Y; Jin R; Sojic N; Jiang D; Chen HY
    Angew Chem Int Ed Engl; 2020 Jun; 59(26):10416-10420. PubMed ID: 32216004
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Wireless optogenetics protects against obesity via stimulation of non-canonical fat thermogenesis.
    Tajima K; Ikeda K; Tanabe Y; Thomson EA; Yoneshiro T; Oguri Y; Ferro MD; Poon ASY; Kajimura S
    Nat Commun; 2020 Apr; 11(1):1730. PubMed ID: 32265443
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Coupling optogenetic stimulation with NanoLuc-based luminescence (BRET) Ca
    Yang J; Cumberbatch D; Centanni S; Shi SQ; Winder D; Webb D; Johnson CH
    Nat Commun; 2016 Oct; 7():13268. PubMed ID: 27786307
    [TBL] [Abstract][Full Text] [Related]  

  • 5. All-Optical Miniaturized Co-culture Assay of Voltage-Gated Ca
    Agus V; Janovjak H
    Methods Mol Biol; 2020; 2173():247-260. PubMed ID: 32651923
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure-Function Relationship of Channelrhodopsins.
    Kato HE
    Adv Exp Med Biol; 2021; 1293():35-53. PubMed ID: 33398806
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Channelrhodopsin-mediated optogenetics highlights a central role of depolarization-dependent plant proton pumps.
    Reyer A; Häßler M; Scherzer S; Huang S; Pedersen JT; Al-Rascheid KAS; Bamberg E; Palmgren M; Dreyer I; Nagel G; Hedrich R; Becker D
    Proc Natl Acad Sci U S A; 2020 Aug; 117(34):20920-20925. PubMed ID: 32788371
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Soft subdermal implant capable of wireless battery charging and programmable controls for applications in optogenetics.
    Kim CY; Ku MJ; Qazi R; Nam HJ; Park JW; Nam KS; Oh S; Kang I; Jang JH; Kim WY; Kim JH; Jeong JW
    Nat Commun; 2021 Jan; 12(1):535. PubMed ID: 33483493
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Novel optogenetics tool: Gt_CCR4, a light-gated cation channel with high reactivity to weak light.
    Hososhima S; Shigemura S; Kandori H; Tsunoda SP
    Biophys Rev; 2020 Apr; 12(2):453-459. PubMed ID: 32166612
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Defining the ionic mechanisms of optogenetic control of vascular tone by channelrhodopsin-2.
    Rorsman NJG; Ta CM; Garnett H; Swietach P; Tammaro P
    Br J Pharmacol; 2018 Jun; 175(11):2028-2045. PubMed ID: 29486056
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optogenetic control of cell differentiation in channelrhodopsin-2-expressing OS3, a bipotential glial progenitor cell line.
    Ono K; Suzuki H; Yamamoto R; Sahashi H; Takido Y; Sawada M
    Neurochem Int; 2017 Mar; 104():49-63. PubMed ID: 28069421
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Making light work of fine-tuning channelrhodopsins.
    Moorhouse AJ; Power JM
    J Biol Chem; 2019 Mar; 294(11):3822-3823. PubMed ID: 30877261
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optogenetic Induction of Colonic Motility in Mice.
    Hibberd TJ; Feng J; Luo J; Yang P; Samineni VK; Gereau RW; Kelley N; Hu H; Spencer NJ
    Gastroenterology; 2018 Aug; 155(2):514-528.e6. PubMed ID: 29782847
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Channelrhodopsin-Dependent Photo-Behavioral Responses in the Unicellular Green Alga Chlamydomonas reinhardtii.
    Wakabayashi KI; Isu A; Ueki N
    Adv Exp Med Biol; 2021; 1293():21-33. PubMed ID: 33398805
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Leaky expression of channelrhodopsin-2 (ChR2) in Ai32 mouse lines.
    Prabhakar A; Vujovic D; Cui L; Olson W; Luo W
    PLoS One; 2019; 14(3):e0213326. PubMed ID: 30913225
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrochemiluminescence as emerging microscopy techniques.
    Zanut A; Fiorani A; Rebeccani S; Kesarkar S; Valenti G
    Anal Bioanal Chem; 2019 Jul; 411(19):4375-4382. PubMed ID: 31020369
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optogenetics and Optical Tools in Automated Patch Clamping.
    Boddum K; Skafte-Pedersen P; Rolland JF; Wilson S
    Methods Mol Biol; 2021; 2188():311-330. PubMed ID: 33119859
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optogenetic control of insulin secretion in intact pancreatic islets with β-cell-specific expression of Channelrhodopsin-2.
    Reinbothe TM; Safi F; Axelsson AS; Mollet IG; Rosengren AH
    Islets; 2014; 6(1):e28095. PubMed ID: 25483880
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improved orange and red Ca²± indicators and photophysical considerations for optogenetic applications.
    Wu J; Liu L; Matsuda T; Zhao Y; Rebane A; Drobizhev M; Chang YF; Araki S; Arai Y; March K; Hughes TE; Sagou K; Miyata T; Nagai T; Li WH; Campbell RE
    ACS Chem Neurosci; 2013 Jun; 4(6):963-72. PubMed ID: 23452507
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optogenetic Modulation of Ion Channels by Photoreceptive Proteins.
    Tsukamoto H; Furutani Y
    Adv Exp Med Biol; 2021; 1293():73-88. PubMed ID: 33398808
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.