BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 32392167)

  • 1. Monte Carlo evaluation of the dose sparing and dose enhancement by combination of Gd-infused tumor and
    Fuentealba M; Santibáñez M
    Appl Radiat Isot; 2020 Sep; 163():109194. PubMed ID: 32392167
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Experimental determination of Gd dose enhancement and Gd dose sparing by
    Santibáñez M; Fuentealba M
    Appl Radiat Isot; 2021 Sep; 175():109787. PubMed ID: 34102413
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Feasibility of dose enhancement assessment: Preliminary results by means of Gd-infused polymer gel dosimeter and Monte Carlo study.
    Santibáñez M; Guillen Y; Chacón D; Figueroa RG; Valente M
    Appl Radiat Isot; 2018 Nov; 141():210-218. PubMed ID: 29678602
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Monte Carlo study of radiation dose enhancement by gadolinium in megavoltage and high dose rate radiotherapy.
    Zhang DG; Feygelman V; Moros EG; Latifi K; Zhang GG
    PLoS One; 2014; 9(10):e109389. PubMed ID: 25275550
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gadolinium-153 as a brachytherapy isotope.
    Enger SA; Fisher DR; Flynn RT
    Phys Med Biol; 2013 Feb; 58(4):957-64. PubMed ID: 23339848
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Monte Carlo study on tissue dose enhancement in brachytherapy: a comparison between gadolinium and gold nanoparticles.
    Bahreyni Toossi MT; Ghorbani M; Mehrpouyan M; Akbari F; Sobhkhiz Sabet L; Soleimani Meigooni A
    Australas Phys Eng Sci Med; 2012 Jun; 35(2):177-85. PubMed ID: 22700179
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tumor dose enhancement by nanoparticles during high dose rate (192)Ir brachytherapy.
    Zabihzadeh M; Arefian S
    J Cancer Res Ther; 2015; 11(4):752-9. PubMed ID: 26881513
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microdosimetric Evaluation of Current and Alternative Brachytherapy Sources-A Geant4-DNA Simulation Study.
    Famulari G; Pater P; Enger SA
    Int J Radiat Oncol Biol Phys; 2018 Jan; 100(1):270-277. PubMed ID: 29102279
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Applications of tissue heterogeneity corrections and biologically effective dose volume histograms in assessing the doses for accelerated partial breast irradiation using an electronic brachytherapy source.
    Shi C; Guo B; Cheng CY; Eng T; Papanikolaou N
    Phys Med Biol; 2010 Sep; 55(18):5283-97. PubMed ID: 20720283
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of gadolinium nanoparticles and molecular contrast agents for radiation therapy-enhancement.
    Delorme R; Taupin F; Flaender M; Ravanat JL; Champion C; Agelou M; Elleaume H
    Med Phys; 2017 Nov; 44(11):5949-5960. PubMed ID: 28886212
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tissue inhomogeneity correction for brachytherapy sources in a heterogeneous phantom with cylindrical symmetry.
    Meigooni AS; Nath R
    Med Phys; 1992; 19(2):401-7. PubMed ID: 1584139
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Absorbed dose calculations in a brachytherapy pelvic phantom using the Monte Carlo method.
    Rodríguez ML; deAlmeida CE
    J Appl Clin Med Phys; 2002; 3(4):285-92. PubMed ID: 12383048
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The dosimetric feasibility of gold nanoparticle-aided radiation therapy (GNRT) via brachytherapy using low-energy gamma-/x-ray sources.
    Cho SH; Jones BL; Krishnan S
    Phys Med Biol; 2009 Aug; 54(16):4889-905. PubMed ID: 19636084
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Application of a directional palladium-103 brachytherapy device on a curved surface.
    Veltchev I; Price R; Chen X; Howell K; Meyer J; Ma CM
    Med Phys; 2019 Apr; 46(4):1905-1913. PubMed ID: 30734318
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Calculated organ doses using Monte Carlo simulations in a reference male phantom undergoing HDR brachytherapy applied to localized prostate carcinoma.
    Candela-Juan C; Perez-Calatayud J; Ballester F; Rivard MJ
    Med Phys; 2013 Mar; 40(3):033901. PubMed ID: 23464344
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interstitial rotating shield brachytherapy for prostate cancer.
    Adams QE; Xu J; Breitbach EK; Li X; Enger SA; Rockey WR; Kim Y; Wu X; Flynn RT
    Med Phys; 2014 May; 41(5):051703. PubMed ID: 24784369
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Patient-specific Monte Carlo dose calculations for high-dose-rate endorectal brachytherapy with shielded intracavitary applicator.
    Poon E; Williamson JF; Vuong T; Verhaegen F
    Int J Radiat Oncol Biol Phys; 2008 Nov; 72(4):1259-66. PubMed ID: 18954720
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The use of tetrahedral mesh geometries in Monte Carlo simulation of applicator based brachytherapy dose distributions.
    Fonseca GP; Landry G; White S; D'Amours M; Yoriyaz H; Beaulieu L; Reniers B; Verhaegen F
    Phys Med Biol; 2014 Oct; 59(19):5921-35. PubMed ID: 25210788
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The collapsed cone algorithm for (192)Ir dosimetry using phantom-size adaptive multiple-scatter point kernels.
    Tedgren ÅC; Plamondon M; Beaulieu L
    Phys Med Biol; 2015 Jul; 60(13):5313-23. PubMed ID: 26108232
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Monte Carlo calculations and experimental measurements of the TG-43U1-recommended dosimetric parameters of 125I (Model IR-Seed2) brachytherapy source.
    Sheikholeslami S; Nedaie HA; Sadeghi M; Pourbeigy H; Shahzadi S; Zehtabian M; Hasani M; Meigooni AS
    J Appl Clin Med Phys; 2016 Jul; 17(4):430-441. PubMed ID: 27455485
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.