These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
144 related articles for article (PubMed ID: 32392263)
1. Imaging dataset of fresh hydrous plants obtained by field-emission scanning electron microscopy conducted using a protective NanoSuit. Takehara S; Takaku Y; Shimomura M; Hariyama T PLoS One; 2020; 15(5):e0232992. PubMed ID: 32392263 [TBL] [Abstract][Full Text] [Related]
2. Dataset of aquatic insects acquired using field-emission scanning electron microscopy and the NanoSuit method. Takaku Y; Suzuki C; Hariyama T Sci Data; 2024 Sep; 11(1):1053. PubMed ID: 39333256 [TBL] [Abstract][Full Text] [Related]
3. A 'NanoSuit' surface shield successfully protects organisms in high vacuum: observations on living organisms in an FE-SEM. Takaku Y; Suzuki H; Ohta I; Tsutsui T; Matsumoto H; Shimomura M; Hariyama T Proc Biol Sci; 2015 Mar; 282(1802):. PubMed ID: 25631998 [TBL] [Abstract][Full Text] [Related]
4. A modified 'NanoSuit®' preserves wet samples in high vacuum: direct observations on cells and tissues in field-emission scanning electron microscopy. Takaku Y; Suzuki H; Kawasaki H; Ohta I; Ishii D; Hirakawa S; Tsutsui T; Matsumoto H; Takehara S; Nakane C; Sakaida K; Suzuki C; Muranaka Y; Kikuchi H; Konno H; Shimomura M; Hariyama T R Soc Open Sci; 2017 Mar; 4(3):160887. PubMed ID: 28405375 [TBL] [Abstract][Full Text] [Related]
5. A 'NanoSuit' successfully protects petals of cherry blossoms in high vacuum: examination of living plants in an FE-SEM. Takehara S; Takaku Y; Suzuki H; Ohta I; Shimomura M; Hariyama T Sci Rep; 2018 Jan; 8(1):1685. PubMed ID: 29374227 [TBL] [Abstract][Full Text] [Related]
6. In situ elemental analyses of living biological specimens using 'NanoSuit' and EDS methods in FE-SEM. Takaku Y; Takehara S; Suzuki C; Suzuki H; Shimomura M; Hariyama T Sci Rep; 2020 Sep; 10(1):14574. PubMed ID: 32884008 [TBL] [Abstract][Full Text] [Related]
7. Dressing living organisms in a thin polymer membrane, the NanoSuit, for high-vacuum FE-SEM observation. Ohta I; Takaku Y; Suzuki H; Ishii D; Muranaka Y; Shimomura M; Hariyama T Microscopy (Oxf); 2014 Aug; 63(4):295-300. PubMed ID: 24824083 [TBL] [Abstract][Full Text] [Related]
8. Biological applications of the NanoSuit for electron imaging and X-microanalysis of insulating specimens. Kim KW Appl Microsc; 2022 May; 52(1):4. PubMed ID: 35543835 [TBL] [Abstract][Full Text] [Related]
9. The NanoSuit method: a novel histological approach for examining paraffin sections in a nondestructive manner by correlative light and electron microscopy. Kawasaki H; Itoh T; Takaku Y; Suzuki H; Kosugi I; Meguro S; Iwashita T; Hariyama T Lab Invest; 2020 Jan; 100(1):161-173. PubMed ID: 31467424 [TBL] [Abstract][Full Text] [Related]
10. The surface topography of the choroid plexus. Environmental, low and high vacuum scanning electron microscopy. Mestres P; Pütz N; Garcia Gómez de Las Heras S; García Poblete E; Morguet A; Laue M Ann Anat; 2011 May; 193(3):197-204. PubMed ID: 21466950 [TBL] [Abstract][Full Text] [Related]
11. The development of field-emission scanning electron microscopy for imaging biological surfaces. Pawley J Scanning; 1997 Aug; 19(5):324-36. PubMed ID: 9262017 [TBL] [Abstract][Full Text] [Related]
12. NanoSuit-Assisted Liquid-Cell Scanning Electron Microscopy Enables Dynamic Gold Nanoparticle Monitoring for the Aggregation and Transmembrane Processes in Living Cells. Yin W; Zhang Y; Liang Y; Yang HH; Xu Y; Liu SY; Zhou J; Dai Z; Zou X Nano Lett; 2022 Jul; 22(14):5788-5794. PubMed ID: 35834670 [TBL] [Abstract][Full Text] [Related]
13. Fast three-dimensional nanoscale metrology in dual-beam FIB-SEM instrumentation. Repetto L; Buzio R; Denurchis C; Firpo G; Piano E; Valbusa U Ultramicroscopy; 2009 Oct; 109(11):1338-42. PubMed ID: 19608346 [TBL] [Abstract][Full Text] [Related]
14. Analytical scanning electron microscopy for solid surface. Ichinokawa T J Electron Microsc Tech; 1989 Jul; 12(3):219-27. PubMed ID: 2795228 [TBL] [Abstract][Full Text] [Related]
15. Application of low-vacuum scanning electron microscopy for renal biopsy specimens. Miyazaki H; Uozaki H; Tojo A; Hirashima S; Inaga S; Sakuma K; Morishita Y; Fukayama M Pathol Res Pract; 2012 Sep; 208(9):503-9. PubMed ID: 22795691 [TBL] [Abstract][Full Text] [Related]
16. Direct observation of unstained biological samples in water using newly developed impedance scanning electron microscopy. Ogura T PLoS One; 2019; 14(8):e0221296. PubMed ID: 31430321 [TBL] [Abstract][Full Text] [Related]
17. Nanoscale analysis of unstained biological specimens in water without radiation damage using high-resolution frequency transmission electric-field system based on FE-SEM. Ogura T Biochem Biophys Res Commun; 2015 Apr; 459(3):521-8. PubMed ID: 25747717 [TBL] [Abstract][Full Text] [Related]
18. Observation of live ticks (Haemaphysalis flava) by scanning electron microscopy under high vacuum pressure. Ishigaki Y; Nakamura Y; Oikawa Y; Yano Y; Kuwabata S; Nakagawa H; Tomosugi N; Takegami T PLoS One; 2012; 7(3):e32676. PubMed ID: 22431980 [TBL] [Abstract][Full Text] [Related]
19. Three-dimensional helical coiling structures and band patterns of hydrous metaphase chromosomes observed by low vacuum scanning electron microscopy. Inaga S; Tanaka K; Iino A Arch Histol Cytol; 2002 Dec; 65(5):415-23. PubMed ID: 12680457 [TBL] [Abstract][Full Text] [Related]
20. Imaging plant nuclei and membrane-associated cytoskeleton by field emission scanning electron microscopy. Fišerová J; Goldberg MW Methods Mol Biol; 2014; 1080():171-81. PubMed ID: 24132428 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]