These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 32392342)

  • 41. Analysis of the reaction mechanism and substrate specificity of haloalkane dehalogenases by sequential and structural comparisons.
    Damborský J; Koca J
    Protein Eng; 1999 Nov; 12(11):989-98. PubMed ID: 10585505
    [TBL] [Abstract][Full Text] [Related]  

  • 42. PredictSNP2: A Unified Platform for Accurately Evaluating SNP Effects by Exploiting the Different Characteristics of Variants in Distinct Genomic Regions.
    Bendl J; Musil M; Štourač J; Zendulka J; Damborský J; Brezovský J
    PLoS Comput Biol; 2016 May; 12(5):e1004962. PubMed ID: 27224906
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Deep learning enables high-quality and high-throughput prediction of enzyme commission numbers.
    Ryu JY; Kim HU; Lee SY
    Proc Natl Acad Sci U S A; 2019 Jul; 116(28):13996-14001. PubMed ID: 31221760
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Enzyme-like proteins from an unselected library of designed amino acid sequences.
    Wei Y; Hecht MH
    Protein Eng Des Sel; 2004 Jan; 17(1):67-75. PubMed ID: 14985539
    [TBL] [Abstract][Full Text] [Related]  

  • 45. CaverDock: a molecular docking-based tool to analyse ligand transport through protein tunnels and channels.
    Vavra O; Filipovic J; Plhak J; Bednar D; Marques SM; Brezovsky J; Stourac J; Matyska L; Damborsky J
    Bioinformatics; 2019 Dec; 35(23):4986-4993. PubMed ID: 31077297
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Robust enzyme design: bioinformatic tools for improved protein stability.
    Suplatov D; Voevodin V; Švedas V
    Biotechnol J; 2015 Mar; 10(3):344-55. PubMed ID: 25524647
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Cloning, biochemical properties, and distribution of mycobacterial haloalkane dehalogenases.
    Jesenská A; Pavlová M; Strouhal M; Chaloupková R; Tesínská I; Monincová M; Prokop Z; Bartos M; Pavlík I; Rychlík I; Möbius P; Nagata Y; Damborsky J
    Appl Environ Microbiol; 2005 Nov; 71(11):6736-45. PubMed ID: 16269704
    [TBL] [Abstract][Full Text] [Related]  

  • 48. REME: an integrated platform for reaction enzyme mining and evaluation.
    Shi Z; Wang D; Li Y; Deng R; Lin J; Liu C; Li H; Wang R; Zhao M; Mao Z; Yuan Q; Liao X; Ma H
    Nucleic Acids Res; 2024 Jul; 52(W1):W299-W305. PubMed ID: 38769057
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Strategies for the discovery and engineering of enzymes for biocatalysis.
    Davids T; Schmidt M; Böttcher D; Bornscheuer UT
    Curr Opin Chem Biol; 2013 Apr; 17(2):215-20. PubMed ID: 23523243
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Relationships between functional subclasses and information contained in active-site and ligand-binding residues in diverse superfamilies.
    Nagao C; Nagano N; Mizuguchi K
    Proteins; 2010 Aug; 78(10):2369-84. PubMed ID: 20544971
    [TBL] [Abstract][Full Text] [Related]  

  • 51. pyCaverDock: Python implementation of the popular tool for analysis of ligand transport with advanced caching and batch calculation support.
    Vavra O; Beranek J; Stourac J; Surkovsky M; Filipovic J; Damborsky J; Martinovic J; Bednar D
    Bioinformatics; 2023 Aug; 39(8):. PubMed ID: 37471591
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Kinetics of binding of fluorescent ligands to enzymes with engineered access tunnels.
    Kaushik S; Prokop Z; Damborsky J; Chaloupkova R
    FEBS J; 2017 Jan; 284(1):134-148. PubMed ID: 27863020
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Catalytic Cycle of Haloalkane Dehalogenases Toward Unnatural Substrates Explored by Computational Modeling.
    Marques SM; Dunajova Z; Prokop Z; Chaloupkova R; Brezovsky J; Damborsky J
    J Chem Inf Model; 2017 Aug; 57(8):1970-1989. PubMed ID: 28696117
    [TBL] [Abstract][Full Text] [Related]  

  • 54. DspA from Strongylocentrotus purpuratus: The first biochemically characterized haloalkane dehalogenase of non-microbial origin.
    Fortova A; Sebestova E; Stepankova V; Koudelakova T; Palkova L; Damborsky J; Chaloupkova R
    Biochimie; 2013 Nov; 95(11):2091-6. PubMed ID: 23939220
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Haloalkane Dehalogenases From Marine Organisms.
    Kunka A; Damborsky J; Prokop Z
    Methods Enzymol; 2018; 605():203-251. PubMed ID: 29909825
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A Haloalkane Dehalogenase from a Marine Microbial Consortium Possessing Exceptionally Broad Substrate Specificity.
    Buryska T; Babkova P; Vavra O; Damborsky J; Prokop Z
    Appl Environ Microbiol; 2018 Jan; 84(2):. PubMed ID: 29101190
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Investigative mining of sequence data for novel enzymes: a case study with nitrilases.
    Seffernick JL; Samanta SK; Louie TM; Wackett LP; Subramanian M
    J Biotechnol; 2009 Aug; 143(1):17-26. PubMed ID: 19539670
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Regioselective enzymatic acylation of complex natural products: expanding molecular diversity.
    González-Sabín J; Morán-Ramallal R; Rebolledo F
    Chem Soc Rev; 2011 Nov; 40(11):5321-35. PubMed ID: 21691665
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Fast Screening of Inhibitor Binding/Unbinding Using Novel Software Tool CaverDock.
    Pinto GP; Vavra O; Filipovic J; Stourac J; Bednar D; Damborsky J
    Front Chem; 2019; 7():709. PubMed ID: 31737596
    [TBL] [Abstract][Full Text] [Related]  

  • 60.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.