BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

350 related articles for article (PubMed ID: 32392730)

  • 1. Layer Morphology and Ink Compatibility of Silver Nanoparticle Inkjet Inks for Near-Infrared Sintering.
    Reenaers D; Marchal W; Biesmans I; Nivelle P; D'Haen J; Deferme W
    Nanomaterials (Basel); 2020 May; 10(5):. PubMed ID: 32392730
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Silver Nanoparticles Based Ink with Moderate Sintering in Flexible and Printed Electronics.
    Mo L; Guo Z; Yang L; Zhang Q; Fang Y; Xin Z; Chen Z; Hu K; Han L; Li L
    Int J Mol Sci; 2019 Apr; 20(9):. PubMed ID: 31036787
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Systematic Investigation of Novel, Controlled Low-Temperature Sintering Processes for Inkjet Printed Silver Nanoparticle Ink.
    Chen Z; Gengenbach U; Koker L; Huang L; Mach TP; Reichert KM; Thelen R; Ungerer M
    Small; 2024 May; 20(21):e2306865. PubMed ID: 38126669
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Robust Design of a Particle-Free Silver-Organo-Complex Ink with High Conductivity and Inkjet Stability for Flexible Electronics.
    Vaseem M; McKerricher G; Shamim A
    ACS Appl Mater Interfaces; 2016 Jan; 8(1):177-86. PubMed ID: 26713357
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An Approach to a Silver Conductive Ink for Inkjet Printer Technology.
    Kholuiskaya SN; Siracusa V; Mukhametova GM; Wasserman LA; Kovalenko VV; Iordanskii AL
    Polymers (Basel); 2024 Jun; 16(12):. PubMed ID: 38932081
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Low-Thermal-Budget Photonic Processing of Highly Conductive Cu Interconnects Based on CuO Nanoinks: Potential for Flexible Printed Electronics.
    Rager MS; Aytug T; Veith GM; Joshi P
    ACS Appl Mater Interfaces; 2016 Jan; 8(3):2441-8. PubMed ID: 26720684
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inkjet Printing of Polyacrylic Acid-Coated Silver Nanoparticle Ink onto Paper with Sub-100 Micron Pixel Size.
    Mavuri A; Mayes AG; Alexander MS
    Materials (Basel); 2019 Jul; 12(14):. PubMed ID: 31311191
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ohmic contact formation for inkjet-printed nanoparticle copper inks on highly doped GaAs.
    Hayati-Roodbari N; Wheeldon A; Hendler C; Fian A; Trattnig R
    Nanotechnology; 2021 Mar; 32(22):. PubMed ID: 33621957
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sintering Inhibition of Silver Nanoparticle Films via AgCl Nanocrystal Formation.
    Öhlund T; Hummelgård M; Olin H
    Nanomaterials (Basel); 2017 Aug; 7(8):. PubMed ID: 28817099
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fast near infrared sintering of silver nanoparticle ink and applications for flexible hybrid circuits.
    Gu W; Yuan W; Zhong T; Wu X; Zhou C; Lin J; Cui Z
    RSC Adv; 2018 Aug; 8(53):30215-30222. PubMed ID: 35546861
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Combined Inkjet Printing and Infrared Sintering of Silver Nanoparticles using a Swathe-by-Swathe and Layer-by-Layer Approach for 3-Dimensional Structures.
    Vaithilingam J; Simonelli M; Saleh E; Senin N; Wildman RD; Hague RJ; Leach RK; Tuck CJ
    ACS Appl Mater Interfaces; 2017 Feb; 9(7):6560-6570. PubMed ID: 28094997
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inkjet Printing of Reactive Silver Ink on Textiles.
    Shahariar H; Kim I; Soewardiman H; Jur JS
    ACS Appl Mater Interfaces; 2019 Feb; 11(6):6208-6216. PubMed ID: 30644708
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Selective laser sintering of inkjet-printed silver nanoparticle inks on paper substrates to achieve highly conductive patterns.
    Balliu E; Andersson H; Engholm M; Öhlund T; Nilsson HE; Olin H
    Sci Rep; 2018 Jul; 8(1):10408. PubMed ID: 29991735
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Graphene-Ag nanohexagonal platelets-based ink with high electrical properties at low sintering temperatures.
    Liu P; Ma J; Deng S; Zeng K; Deng D; Xie W; Lu A
    Nanotechnology; 2016 Sep; 27(38):385603. PubMed ID: 27518607
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The characteristic variations of inkjet-printed silver nanoparticle ink during furnace sintering.
    Hwang JY; Moon SJ
    J Nanosci Nanotechnol; 2013 Sep; 13(9):6145-9. PubMed ID: 24205617
    [TBL] [Abstract][Full Text] [Related]  

  • 16. All-printed multiplexed electrocatalytic biosensors with rationally designed nanoparticle inks.
    Li X; Yang M; Rao A; Su Y; Yang T; Ye Y; Wang J; Pan S; Chen F; Wang B; Luo Z
    Nanotechnology; 2023 May; 34(32):. PubMed ID: 37156233
    [TBL] [Abstract][Full Text] [Related]  

  • 17. All Inkjet-Printed Graphene-Silver Composite Ink on Textiles for Highly Conductive Wearable Electronics Applications.
    Karim N; Afroj S; Tan S; Novoselov KS; Yeates SG
    Sci Rep; 2019 May; 9(1):8035. PubMed ID: 31142768
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multijet Gold Nanoparticle Inks for Additive Manufacturing of Printed and Wearable Electronics.
    Valayil Varghese T; Eixenberger J; Rajabi-Kouchi F; Lazouskaya M; Francis C; Burgoyne H; Wada K; Subbaraman H; Estrada D
    ACS Mater Au; 2024 Jan; 4(1):65-73. PubMed ID: 38221917
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Photonic Curing of Low-Cost Aqueous Silver Flake Inks for Printed Conductors with Increased Yield.
    Cronin HM; Stoeva Z; Brown M; Shkunov M; Silva SRP
    ACS Appl Mater Interfaces; 2018 Jun; 10(25):21398-21410. PubMed ID: 29863321
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Large-Area Inkjet-Printed Flexible Hybrid Electrodes with Photonic Sintered Silver Grids/High Conductive Polymer.
    Kant C; Mahmood S; Seetharaman M; Katiyar M
    Small Methods; 2024 Jan; 8(1):e2300638. PubMed ID: 37727075
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.