These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

249 related articles for article (PubMed ID: 32393397)

  • 1. A powerful microbial group association test based on the higher criticism analysis for sparse microbial association signals.
    Koh H; Zhao N
    Microbiome; 2020 May; 8(1):63. PubMed ID: 32393397
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A powerful adaptive microbiome-based association test for microbial association signals with diverse sparsity levels.
    Sun H; Huang X; Fu L; Huo B; He T; Jiang X
    J Genet Genomics; 2021 Sep; 48(9):851-859. PubMed ID: 34411712
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A powerful microbiome-based association test and a microbial taxa discovery framework for comprehensive association mapping.
    Koh H; Blaser MJ; Li H
    Microbiome; 2017 Apr; 5(1):45. PubMed ID: 28438217
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Distance-Based Kernel Association Test Based on the Generalized Linear Mixed Model for Correlated Microbiome Studies.
    Koh H; Li Y; Zhan X; Chen J; Zhao N
    Front Genet; 2019; 10():458. PubMed ID: 31156711
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A distance-based approach for testing the mediation effect of the human microbiome.
    Zhang J; Wei Z; Chen J
    Bioinformatics; 2018 Jun; 34(11):1875-1883. PubMed ID: 29346509
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A highly adaptive microbiome-based association test for survival traits.
    Koh H; Livanos AE; Blaser MJ; Li H
    BMC Genomics; 2018 Mar; 19(1):210. PubMed ID: 29558893
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Detecting sparse microbial association signals adaptively from longitudinal microbiome data based on generalized estimating equations.
    Sun H; Huang X; Huo B; Tan Y; He T; Jiang X
    Brief Bioinform; 2022 Sep; 23(5):. PubMed ID: 35561307
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An adaptive association test for microbiome data.
    Wu C; Chen J; Kim J; Pan W
    Genome Med; 2016 May; 8(1):56. PubMed ID: 27198579
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phylogeny-guided microbiome OTU-specific association test (POST).
    Huang C; Callahan BJ; Wu MC; Holloway ST; Brochu H; Lu W; Peng X; Tzeng JY
    Microbiome; 2022 Jun; 10(1):86. PubMed ID: 35668471
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transformation and differential abundance analysis of microbiome data incorporating phylogeny.
    Zhou C; Zhao H; Wang T
    Bioinformatics; 2021 Dec; 37(24):4652-4660. PubMed ID: 34302462
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Phylogeny-Regularized Sparse Regression Model for Predictive Modeling of Microbial Community Data.
    Xiao J; Chen L; Yu Y; Zhang X; Chen J
    Front Microbiol; 2018; 9():3112. PubMed ID: 30619188
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A two-stage microbial association mapping framework with advanced FDR control.
    Hu J; Koh H; He L; Liu M; Blaser MJ; Li H
    Microbiome; 2018 Jul; 6(1):131. PubMed ID: 30045760
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Compositionally Aware Phylogenetic Beta-Diversity Measures Better Resolve Microbiomes Associated with Phenotype.
    Martino C; McDonald D; Cantrell K; Dilmore AH; Vázquez-Baeza Y; Shenhav L; Shaffer JP; Rahman G; Armstrong G; Allaband C; Song SJ; Knight R
    mSystems; 2022 Jun; 7(3):e0005022. PubMed ID: 35477286
    [TBL] [Abstract][Full Text] [Related]  

  • 14. False discovery rate control incorporating phylogenetic tree increases detection power in microbiome-wide multiple testing.
    Xiao J; Cao H; Chen J
    Bioinformatics; 2017 Sep; 33(18):2873-2881. PubMed ID: 28505251
    [TBL] [Abstract][Full Text] [Related]  

  • 15. TARO: tree-aggregated factor regression for microbiome data integration.
    Mishra AK; Mahmud I; Lorenzi PL; Jenq RR; Wargo JA; Ajami NJ; Peterson CB
    Bioinformatics; 2024 Jun; 40(6):. PubMed ID: 38788190
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Batch effects correction for microbiome data with Dirichlet-multinomial regression.
    Dai Z; Wong SH; Yu J; Wei Y
    Bioinformatics; 2019 Mar; 35(5):807-814. PubMed ID: 30816927
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Simultaneous Feature Selection and Compositional Association Test for Detecting Sparse Associations in High-Dimensional Metagenomic Data.
    Hinton AL; Mucha PJ
    Front Microbiol; 2022; 13():837396. PubMed ID: 35387076
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adaptive and powerful microbiome multivariate association analysis via feature selection.
    Banerjee K; Chen J; Zhan X
    NAR Genom Bioinform; 2022 Mar; 4(1):lqab120. PubMed ID: 35047812
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Novel Sparse Compositional Technique Reveals Microbial Perturbations.
    Martino C; Morton JT; Marotz CA; Thompson LR; Tripathi A; Knight R; Zengler K
    mSystems; 2019; 4(1):. PubMed ID: 30801021
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A novel deep learning method for predictive modeling of microbiome data.
    Wang Y; Bhattacharya T; Jiang Y; Qin X; Wang Y; Liu Y; Saykin AJ; Chen L
    Brief Bioinform; 2021 May; 22(3):. PubMed ID: 32406914
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.