These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Modelling the suppression of a malaria vector using a CRISPR-Cas9 gene drive to reduce female fertility. North AR; Burt A; Godfray HCJ BMC Biol; 2020 Aug; 18(1):98. PubMed ID: 32782000 [TBL] [Abstract][Full Text] [Related]
4. Next-generation gene drive for population modification of the malaria vector mosquito, Carballar-Lejarazú R; Ogaugwu C; Tushar T; Kelsey A; Pham TB; Murphy J; Schmidt H; Lee Y; Lanzaro GC; James AA Proc Natl Acad Sci U S A; 2020 Sep; 117(37):22805-22814. PubMed ID: 32839345 [TBL] [Abstract][Full Text] [Related]
5. Resistance to a CRISPR-based gene drive at an evolutionarily conserved site is revealed by mimicking genotype fixation. Fuchs S; Garrood WT; Beber A; Hammond A; Galizi R; Gribble M; Morselli G; Hui TJ; Willis K; Kranjc N; Burt A; Crisanti A; Nolan T PLoS Genet; 2021 Oct; 17(10):e1009740. PubMed ID: 34610011 [TBL] [Abstract][Full Text] [Related]
7. Gene-drive suppression of mosquito populations in large cages as a bridge between lab and field. Hammond A; Pollegioni P; Persampieri T; North A; Minuz R; Trusso A; Bucci A; Kyrou K; Morianou I; Simoni A; Nolan T; Müller R; Crisanti A Nat Commun; 2021 Jul; 12(1):4589. PubMed ID: 34321476 [TBL] [Abstract][Full Text] [Related]
8. Converting endogenous genes of the malaria mosquito into simple non-autonomous gene drives for population replacement. Hoermann A; Tapanelli S; Capriotti P; Del Corsano G; Masters EK; Habtewold T; Christophides GK; Windbichler N Elife; 2021 Apr; 10():. PubMed ID: 33845943 [TBL] [Abstract][Full Text] [Related]
9. Systematic identification of plausible pathways to potential harm via problem formulation for investigational releases of a population suppression gene drive to control the human malaria vector Anopheles gambiae in West Africa. Connolly JB; Mumford JD; Fuchs S; Turner G; Beech C; North AR; Burt A Malar J; 2021 Mar; 20(1):170. PubMed ID: 33781254 [TBL] [Abstract][Full Text] [Related]
10. Targeting mosquito X-chromosomes reveals complex transmission dynamics of sex ratio distorting gene drives. Haber DA; Arien Y; Lamdan LB; Alcalay Y; Zecharia C; Krsticevic F; Yonah ES; Avraham RD; Krzywinska E; Krzywinski J; Marois E; Windbichler N; Papathanos PA Nat Commun; 2024 Jun; 15(1):4983. PubMed ID: 38862555 [TBL] [Abstract][Full Text] [Related]
11. Effects of stable ectopic expression of the primary sex determination gene Yob in the mosquito Anopheles gambiae. Krzywinska E; Krzywinski J Parasit Vectors; 2018 Dec; 11(Suppl 2):648. PubMed ID: 30583747 [TBL] [Abstract][Full Text] [Related]
12. Analysis of off-target effects in CRISPR-based gene drives in the human malaria mosquito. Garrood WT; Kranjc N; Petri K; Kim DY; Guo JA; Hammond AM; Morianou I; Pattanayak V; Joung JK; Crisanti A; Simoni A Proc Natl Acad Sci U S A; 2021 Jun; 118(22):. PubMed ID: 34050017 [TBL] [Abstract][Full Text] [Related]
13. Bioinformatic and literature assessment of toxicity and allergenicity of a CRISPR-Cas9 engineered gene drive to control Anopheles gambiae the mosquito vector of human malaria. Qureshi A; Connolly JB Malar J; 2023 Aug; 22(1):234. PubMed ID: 37580703 [TBL] [Abstract][Full Text] [Related]
14. A genetically encoded anti-CRISPR protein constrains gene drive spread and prevents population suppression. Taxiarchi C; Beaghton A; Don NI; Kyrou K; Gribble M; Shittu D; Collins SP; Beisel CL; Galizi R; Crisanti A Nat Commun; 2021 Jun; 12(1):3977. PubMed ID: 34172748 [TBL] [Abstract][Full Text] [Related]
15. Y chromosome shredding in Anopheles gambiae: Insight into the cellular dynamics of a novel synthetic sex ratio distorter. Vitale M; Kranjc N; Leigh J; Kyrou K; Courty T; Marston L; Grilli S; Crisanti A; Bernardini F PLoS Genet; 2024 Jun; 20(6):e1011303. PubMed ID: 38848445 [TBL] [Abstract][Full Text] [Related]
16. A CRISPR-Cas9 gene drive system targeting female reproduction in the malaria mosquito vector Anopheles gambiae. Hammond A; Galizi R; Kyrou K; Simoni A; Siniscalchi C; Katsanos D; Gribble M; Baker D; Marois E; Russell S; Burt A; Windbichler N; Crisanti A; Nolan T Nat Biotechnol; 2016 Jan; 34(1):78-83. PubMed ID: 26641531 [TBL] [Abstract][Full Text] [Related]
17. Nuclease-based gene drives, an innovative tool for insect vector control: advantages and challenges of the technology. Quinn CM; Nolan T Curr Opin Insect Sci; 2020 Jun; 39():77-83. PubMed ID: 32339930 [TBL] [Abstract][Full Text] [Related]
18. A synthetic sex ratio distortion system for the control of the human malaria mosquito. Galizi R; Doyle LA; Menichelli M; Bernardini F; Deredec A; Burt A; Stoddard BL; Windbichler N; Crisanti A Nat Commun; 2014 Jun; 5():3977. PubMed ID: 24915045 [TBL] [Abstract][Full Text] [Related]
19. Testing non-autonomous antimalarial gene drive effectors using self-eliminating drivers in the African mosquito vector Anopheles gambiae. Ellis DA; Avraam G; Hoermann A; Wyer CAS; Ong YX; Christophides GK; Windbichler N PLoS Genet; 2022 Jun; 18(6):e1010244. PubMed ID: 35653396 [TBL] [Abstract][Full Text] [Related]
20. Vector genetics, insecticide resistance and gene drives: An agent-based modeling approach to evaluate malaria transmission and elimination. Selvaraj P; Wenger EA; Bridenbecker D; Windbichler N; Russell JR; Gerardin J; Bever CA; Nikolov M PLoS Comput Biol; 2020 Aug; 16(8):e1008121. PubMed ID: 32797077 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]