These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 32393851)

  • 21. Functional invertebrate prey groups reflect dietary responses to phenology and farming activity and pest control services in three sympatric species of aerially foraging insectivorous birds.
    Orłowski G; Karg J; Karg G
    PLoS One; 2014; 9(12):e114906. PubMed ID: 25506696
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Examining the vulnerability of localized reforestation strategies to climate change at a macroscale.
    Lochhead K; Ghafghazi S; LeMay V; Bull GQ
    J Environ Manage; 2019 Dec; 252():109625. PubMed ID: 31604183
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Land-use and climatic causes of environmental novelty in Wisconsin since 1890.
    Williams JW; Burke KD; Crossley MS; Grant DA; Radeloff VC
    Ecol Appl; 2019 Oct; 29(7):e01955. PubMed ID: 31199539
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Assessing the consequences of global change for forest disturbance from herbivores and pathogens.
    Ayres MP; Lombardero MJ
    Sci Total Environ; 2000 Nov; 262(3):263-86. PubMed ID: 11087032
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Robustness of plant-insect herbivore interaction networks to climate change in a fragmented temperate forest landscape.
    Bähner KW; Zweig KA; Leal IR; Wirth R
    Bull Entomol Res; 2017 Oct; 107(5):563-572. PubMed ID: 28185607
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Silvicultural management in maintaining biodiversity and resistance of forests in Europe-temperate zone.
    Spiecker H
    J Environ Manage; 2003 Jan; 67(1):55-65. PubMed ID: 12659804
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Land use strategies to mitigate climate change in carbon dense temperate forests.
    Law BE; Hudiburg TW; Berner LT; Kent JJ; Buotte PC; Harmon ME
    Proc Natl Acad Sci U S A; 2018 Apr; 115(14):3663-3668. PubMed ID: 29555758
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Predicting global change effects on forest biomass and composition in south-central Siberia.
    Gustafson EJ; Shvidenko AZ; Sturtevant BR; Scheller RM
    Ecol Appl; 2010 Apr; 20(3):700-15. PubMed ID: 20437957
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Agriculture sows pests: how crop domestication, host shifts, and agricultural intensification can create insect pests from herbivores.
    Bernal JS; Medina RF
    Curr Opin Insect Sci; 2018 Apr; 26():76-81. PubMed ID: 29764664
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The Impact of Climate Change on Agricultural Insect Pests.
    Skendžić S; Zovko M; Živković IP; Lešić V; Lemić D
    Insects; 2021 May; 12(5):. PubMed ID: 34066138
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The implication of irrigation in climate change impact assessment: a European-wide study.
    Zhao G; Webber H; Hoffmann H; Wolf J; Siebert S; Ewert F
    Glob Chang Biol; 2015 Nov; 21(11):4031-48. PubMed ID: 26227557
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Diversification of forest management regimes secures tree microhabitats and bird abundance under climate change.
    Augustynczik ALD; Asbeck T; Basile M; Bauhus J; Storch I; Mikusiński G; Yousefpour R; Hanewinkel M
    Sci Total Environ; 2019 Feb; 650(Pt 2):2717-2730. PubMed ID: 30296777
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Integrating Plant Science and Crop Modeling: Assessment of the Impact of Climate Change on Soybean and Maize Production.
    Fodor N; Challinor A; Droutsas I; Ramirez-Villegas J; Zabel F; Koehler AK; Foyer CH
    Plant Cell Physiol; 2017 Nov; 58(11):1833-1847. PubMed ID: 29016928
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Future Risks of Pest Species under Changing Climatic Conditions.
    Biber-Freudenberger L; Ziemacki J; Tonnang HE; Borgemeister C
    PLoS One; 2016; 11(4):e0153237. PubMed ID: 27054718
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Extreme heat effects on perennial crops and strategies for sustaining future production.
    Parker LE; McElrone AJ; Ostoja SM; Forrestel EJ
    Plant Sci; 2020 Jun; 295():110397. PubMed ID: 32534613
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Forest insect pest management and forest management in China: an overview.
    Ji L; Wang Z; Wang X; An L
    Environ Manage; 2011 Dec; 48(6):1107-21. PubMed ID: 21667316
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Climate change has likely already affected global food production.
    Ray DK; West PC; Clark M; Gerber JS; Prishchepov AV; Chatterjee S
    PLoS One; 2019; 14(5):e0217148. PubMed ID: 31150427
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Perceptions of climate change across the Canadian forest sector: The key factors of institutional and geographical environment.
    Ameztegui A; Solarik KA; Parkins JR; Houle D; Messier C; Gravel D
    PLoS One; 2018; 13(6):e0197689. PubMed ID: 29897977
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Climate adaptation by crop migration.
    Sloat LL; Davis SJ; Gerber JS; Moore FC; Ray DK; West PC; Mueller ND
    Nat Commun; 2020 Mar; 11(1):1243. PubMed ID: 32144261
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Alternatives to neonicotinoid insecticides for pest control: case studies in agriculture and forestry.
    Furlan L; Kreutzweiser D
    Environ Sci Pollut Res Int; 2015 Jan; 22(1):135-47. PubMed ID: 25273517
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.