BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

256 related articles for article (PubMed ID: 32393896)

  • 21. Locomotor speed control circuits in the caudal brainstem.
    Capelli P; Pivetta C; Soledad Esposito M; Arber S
    Nature; 2017 Nov; 551(7680):373-377. PubMed ID: 29059682
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Contribution of postural muscle tone to full expression of posture and locomotor movements: multi-faceted analyses of its setting brainstem-spinal cord mechanisms in the cat.
    Mori S
    Jpn J Physiol; 1989; 39(6):785-809. PubMed ID: 2698966
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Activity of reticulospinal neurons during locomotion in the freely behaving lamprey.
    Deliagina TG; Zelenin PV; Fagerstedt P; Grillner S; Orlovsky GN
    J Neurophysiol; 2000 Feb; 83(2):853-63. PubMed ID: 10669499
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Freely Behaving Mice Can Brake and Turn During Optogenetic Stimulation of the Mesencephalic Locomotor Region.
    van der Zouwen CI; Boutin J; Fougère M; Flaive A; Vivancos M; Santuz A; Akay T; Sarret P; Ryczko D
    Front Neural Circuits; 2021; 15():639900. PubMed ID: 33897379
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [Locomotor control by the brainstem and spinal cord].
    Takakusaki K; Matsuyama K
    Brain Nerve; 2010 Nov; 62(11):1117-28. PubMed ID: 21068448
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Spinal projection neurons control turning behaviors in zebrafish.
    Huang KH; Ahrens MB; Dunn TW; Engert F
    Curr Biol; 2013 Aug; 23(16):1566-73. PubMed ID: 23910662
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A new conceptual framework for the integrated neural control of locomotor and sympathetic function: implications for exercise after spinal cord injury.
    Cowley KC
    Appl Physiol Nutr Metab; 2018 Nov; 43(11):1140-1150. PubMed ID: 30071179
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The effect of selective brainstem or spinal cord lesions on treadmill locomotion evoked by stimulation of the mesencephalic or pontomedullary locomotor regions.
    Noga BR; Kriellaars DJ; Jordan LM
    J Neurosci; 1991 Jun; 11(6):1691-700. PubMed ID: 2045881
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Phasic modulation of transmission from vestibular inputs to reticulospinal neurons during fictive locomotion in lampreys.
    Bussières N; Dubuc R
    Brain Res; 1992 Jun; 582(1):147-53. PubMed ID: 1323371
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Computational modeling of brainstem circuits controlling locomotor frequency and gait.
    Ausborn J; Shevtsova NA; Caggiano V; Danner SM; Rybak IA
    Elife; 2019 Jan; 8():. PubMed ID: 30663578
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Differential effects of the reticulospinal system on locomotion in lamprey.
    Wannier T; Deliagina TG; Orlovsky GN; Grillner S
    J Neurophysiol; 1998 Jul; 80(1):103-12. PubMed ID: 9658032
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Lateral turns in the Lamprey. II. Activity of reticulospinal neurons during the generation of fictive turns.
    Fagerstedt P; Orlovsky GN; Deliagina TG; Grillner S; Ullén F
    J Neurophysiol; 2001 Nov; 86(5):2257-65. PubMed ID: 11698516
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cortical and brainstem control of locomotion.
    Drew T; Prentice S; Schepens B
    Prog Brain Res; 2004; 143():251-61. PubMed ID: 14653170
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The mesencephalic locomotor region sends a bilateral glutamatergic drive to hindbrain reticulospinal neurons in a tetrapod.
    Ryczko D; Auclair F; Cabelguen JM; Dubuc R
    J Comp Neurol; 2016 May; 524(7):1361-83. PubMed ID: 26470600
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Organization of left-right coordination of neuronal activity in the mammalian spinal cord: Insights from computational modelling.
    Shevtsova NA; Talpalar AE; Markin SN; Harris-Warrick RM; Kiehn O; Rybak IA
    J Physiol; 2015 Jun; 593(11):2403-26. PubMed ID: 25820677
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Descending signals from the pontomedullary reticular formation are bilateral, asymmetric, and gated during reaching movements in the cat.
    Schepens B; Drew T
    J Neurophysiol; 2006 Nov; 96(5):2229-52. PubMed ID: 16837662
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Supraspinal control of spinal reflex responses to body bending during different behaviours in lampreys.
    Hsu LJ; Zelenin PV; Orlovsky GN; Deliagina TG
    J Physiol; 2017 Feb; 595(3):883-900. PubMed ID: 27589479
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Burst discharges of pontine reticular neurons in relation to forelimb stepping of thalamic and high spinal cats.
    Shimamura M; Fuwa T; Kogure I
    Brain Res; 1985 Nov; 346(2):363-7. PubMed ID: 4052785
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Dual-mode operation of neuronal networks involved in left-right alternation.
    Talpalar AE; Bouvier J; Borgius L; Fortin G; Pierani A; Kiehn O
    Nature; 2013 Aug; 500(7460):85-8. PubMed ID: 23812590
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Propriospinal transmission of the locomotor command signal in the neonatal rat.
    Cowley KC; Zaporozhets E; Schmidt BJ
    Ann N Y Acad Sci; 2010 Jun; 1198():42-53. PubMed ID: 20536919
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.