These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

256 related articles for article (PubMed ID: 32393896)

  • 41. Diencephalic locomotor region in the lamprey--afferents and efferent control.
    Ménard A; Grillner S
    J Neurophysiol; 2008 Sep; 100(3):1343-53. PubMed ID: 18596192
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Hindbrain V2a neurons in the excitation of spinal locomotor circuits during zebrafish swimming.
    Kimura Y; Satou C; Fujioka S; Shoji W; Umeda K; Ishizuka T; Yawo H; Higashijima S
    Curr Biol; 2013 May; 23(10):843-9. PubMed ID: 23623549
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Brainstem Circuits for Locomotion.
    Leiras R; Cregg JM; Kiehn O
    Annu Rev Neurosci; 2022 Jul; 45():63-85. PubMed ID: 34985919
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A cellular mechanism for the transformation of a sensory input into a motor command.
    Di Prisco GV; Pearlstein E; Le Ray D; Robitaille R; Dubuc R
    J Neurosci; 2000 Nov; 20(21):8169-76. PubMed ID: 11050140
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Bimodal Respiratory-Locomotor Neurons in the Neonatal Rat Spinal Cord.
    Le Gal JP; Juvin L; Cardoit L; Morin D
    J Neurosci; 2016 Jan; 36(3):926-37. PubMed ID: 26791221
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Development and regenerative capacity of descending supraspinal pathways in tetrapods: a comparative approach.
    ten Donkelaar HJ
    Adv Anat Embryol Cell Biol; 2000; 154():iii-ix, 1-145. PubMed ID: 10692782
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Neurochemical excitation of propriospinal neurons facilitates locomotor command signal transmission in the lesioned spinal cord.
    Zaporozhets E; Cowley KC; Schmidt BJ
    J Neurophysiol; 2011 Jun; 105(6):2818-29. PubMed ID: 21451056
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A Brainstem Neural Substrate for Stopping Locomotion.
    Grätsch S; Auclair F; Demers O; Auguste E; Hanna A; Büschges A; Dubuc R
    J Neurosci; 2019 Feb; 39(6):1044-1057. PubMed ID: 30541913
    [TBL] [Abstract][Full Text] [Related]  

  • 49. In vitro brainstem-spinal cord preparations for study of motor systems for mammalian respiration and locomotion.
    Smith JC; Feldman JL
    J Neurosci Methods; 1987 Oct; 21(2-4):321-33. PubMed ID: 2890797
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Heterogeneity of the population of command neurons in the lamprey.
    Zelenin PV; Grillner S; Orlovsky GN; Deliagina TG
    J Neurosci; 2001 Oct; 21(19):7793-803. PubMed ID: 11567070
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Nigral Glutamatergic Neurons Control the Speed of Locomotion.
    Ryczko D; Grätsch S; Schläger L; Keuyalian A; Boukhatem Z; Garcia C; Auclair F; Büschges A; Dubuc R
    J Neurosci; 2017 Oct; 37(40):9759-9770. PubMed ID: 28924005
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Descending pathways eliciting forelimb stepping in the lateral funiculus: experimental studies with stimulation and lesion of the cervical cord in decerebrate cats.
    Yamaguchi T
    Brain Res; 1986 Jul; 379(1):125-36. PubMed ID: 3742207
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Encoding and decoding of reticulospinal commands.
    Deliagina TG; Zelenin PV; Orlovsky GN
    Brain Res Brain Res Rev; 2002 Oct; 40(1-3):166-77. PubMed ID: 12589915
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Brainstem control of head movements during orienting; organization of the premotor circuits.
    Isa T; Sasaki S
    Prog Neurobiol; 2002 Mar; 66(4):205-41. PubMed ID: 11960679
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Forelimb locomotor generators and quadrupedal locomotion in the neonatal rat.
    Ballion B; Morin D; Viala D
    Eur J Neurosci; 2001 Nov; 14(10):1727-38. PubMed ID: 11860467
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Distinct descending motor cortex pathways and their roles in movement.
    Economo MN; Viswanathan S; Tasic B; Bas E; Winnubst J; Menon V; Graybuck LT; Nguyen TN; Smith KA; Yao Z; Wang L; Gerfen CR; Chandrashekar J; Zeng H; Looger LL; Svoboda K
    Nature; 2018 Nov; 563(7729):79-84. PubMed ID: 30382200
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Coupling of spinal locomotor networks in larval lamprey revealed by receptor blockers for inhibitory amino acids: neurophysiology and computer modeling.
    Hagevik A; McClellan AD
    J Neurophysiol; 1994 Oct; 72(4):1810-29. PubMed ID: 7823103
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The in vitro neonatal rat spinal cord preparation: a new insight into mammalian locomotor mechanisms.
    Clarac F; Pearlstein E; Pflieger JF; Vinay L
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2004 May; 190(5):343-57. PubMed ID: 14872261
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Pontine reticulospinal projections in the neonatal mouse: Internal organization and axon trajectories.
    Sivertsen MS; Perreault MC; Glover JC
    J Comp Neurol; 2016 Apr; 524(6):1270-91. PubMed ID: 26400815
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Diencephalic projection to reticulospinal neurons involved in the initiation of locomotion in adult lampreys Lampetra fluviatilis.
    El Manira A; Pombal MA; Grillner S
    J Comp Neurol; 1997 Dec; 389(4):603-16. PubMed ID: 9421142
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.