These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
192 related articles for article (PubMed ID: 32394376)
1. Visualizing Genome Reorganization Using 3D DNA FISH. Jubb A; Boyle S Methods Mol Biol; 2020; 2148():85-95. PubMed ID: 32394376 [TBL] [Abstract][Full Text] [Related]
2. Combined immunofluorescence and DNA FISH on 3D-preserved interphase nuclei to study changes in 3D nuclear organization. Chaumeil J; Micsinai M; Skok JA J Vis Exp; 2013 Feb; (72):e50087. PubMed ID: 23407477 [TBL] [Abstract][Full Text] [Related]
3. Fluorescence In Situ Hybridization (FISH) and Immunolabeling on 3D Preserved Nuclei. Bey TD; Koini M; Fransz P Methods Mol Biol; 2018; 1675():467-480. PubMed ID: 29052208 [TBL] [Abstract][Full Text] [Related]
4. ChromoTrace: Computational reconstruction of 3D chromosome configurations for super-resolution microscopy. Barton C; Morganella S; Ødegård-Fougner Ø; Alexander S; Ries J; Fitzgerald T; Ellenberg J; Birney E PLoS Comput Biol; 2018 Mar; 14(3):e1006002. PubMed ID: 29522506 [TBL] [Abstract][Full Text] [Related]
5. A novel cytogenetic method to image chromatin interactions at subkilobase resolution: Tn5 transposase-based fluorescence in situ hybridization. Niu J; Zhang X; Li G; Yan P; Yan Q; Dai Q; Jin D; Shen X; Wang J; Zhang MQ; Gao J J Genet Genomics; 2020 Dec; 47(12):727-735. PubMed ID: 33750643 [TBL] [Abstract][Full Text] [Related]
7. 3D Multicolor DNA FISH Tool to Study Nuclear Architecture in Human Primary Cells. Marasca F; Cortesi A; Manganaro L; Bodega B J Vis Exp; 2020 Jan; (155):. PubMed ID: 32065142 [TBL] [Abstract][Full Text] [Related]
8. Developing novel methods to image and visualize 3D genomes. Ma T; Chen L; Shi M; Niu J; Zhang X; Yang X; Zhanghao K; Wang M; Xi P; Jin D; Zhang M; Gao J Cell Biol Toxicol; 2018 Oct; 34(5):367-380. PubMed ID: 29577183 [TBL] [Abstract][Full Text] [Related]
9. Multicolor 3D fluorescence in situ hybridization for imaging interphase chromosomes. Cremer M; Grasser F; Lanctôt C; Müller S; Neusser M; Zinner R; Solovei I; Cremer T Methods Mol Biol; 2008; 463():205-39. PubMed ID: 18951171 [TBL] [Abstract][Full Text] [Related]
10. Higher-Order Chromatin Organization Using 3D DNA Fluorescent In Situ Hybridization. Szabo Q; Cavalli G; Bantignies F Methods Mol Biol; 2021; 2157():221-237. PubMed ID: 32820407 [TBL] [Abstract][Full Text] [Related]
11. Visualizing the Spatial Relationship of the Genome with the Nuclear Envelope Using Fluorescence In Situ Hybridization. Clements CS; Bikkul U; Ahmed MH; Foster HA; Godwin LS; Bridger JM Methods Mol Biol; 2016; 1411():387-406. PubMed ID: 27147055 [TBL] [Abstract][Full Text] [Related]
12. Genome-Scale Imaging of the 3D Organization and Transcriptional Activity of Chromatin. Su JH; Zheng P; Kinrot SS; Bintu B; Zhuang X Cell; 2020 Sep; 182(6):1641-1659.e26. PubMed ID: 32822575 [TBL] [Abstract][Full Text] [Related]
13. RASER-FISH: non-denaturing fluorescence in situ hybridization for preservation of three-dimensional interphase chromatin structure. Brown JM; De Ornellas S; Parisi E; Schermelleh L; Buckle VJ Nat Protoc; 2022 May; 17(5):1306-1331. PubMed ID: 35379945 [TBL] [Abstract][Full Text] [Related]
14. 3D-FISH Analysis of the Spatial Genome Organization in Skin Cells in Situ. Mardaryev AN; Fessing MY Methods Mol Biol; 2020; 2154():217-230. PubMed ID: 32314220 [TBL] [Abstract][Full Text] [Related]
15. The potential of 3D-FISH and super-resolution structured illumination microscopy for studies of 3D nuclear architecture: 3D structured illumination microscopy of defined chromosomal structures visualized by 3D (immuno)-FISH opens new perspectives for studies of nuclear architecture. Markaki Y; Smeets D; Fiedler S; Schmid VJ; Schermelleh L; Cremer T; Cremer M Bioessays; 2012 May; 34(5):412-26. PubMed ID: 22508100 [TBL] [Abstract][Full Text] [Related]
16. Light optical precision measurements of the active and inactive Prader-Willi syndrome imprinted regions in human cell nuclei. Rauch J; Knoch TA; Solovei I; Teller K; Stein S; Buiting K; Horsthemke B; Langowski J; Cremer T; Hausmann M; Cremer C Differentiation; 2008 Jan; 76(1):66-82. PubMed ID: 18039333 [TBL] [Abstract][Full Text] [Related]
17. Tracing DNA paths and RNA profiles in cultured cells and tissues with ORCA. Mateo LJ; Sinnott-Armstrong N; Boettiger AN Nat Protoc; 2021 Mar; 16(3):1647-1713. PubMed ID: 33619390 [TBL] [Abstract][Full Text] [Related]
18. Visualization of Polytene Chromatin in Mosquito Cell Nuclei Using Three-Dimensional Fluorescence In Situ Hybridization. Bondarenko SM; Liang J; Sharakhova MV; Sharakhov IV Cold Spring Harb Protoc; 2022 Dec; 2022(12):599-605. PubMed ID: 35960625 [TBL] [Abstract][Full Text] [Related]
19. Smart 3D-FISH: automation of distance analysis in nuclei of interphase cells by image processing. Gué M; Messaoudi C; Sun JS; Boudier T Cytometry A; 2005 Sep; 67(1):18-26. PubMed ID: 16082715 [TBL] [Abstract][Full Text] [Related]
20. 3D Immuno-DNA Fluorescence In Situ Hybridization (FISH) for Detection of HIV-1 and Cellular Genes in Primary CD4 Lucic B; Wegner J; Stanic M; Jost KL; Lusic M Methods Mol Biol; 2021; 2157():239-249. PubMed ID: 32820408 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]