These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 32394391)

  • 1. In Situ Sequencing: A High-Throughput, Multi-Targeted Gene Expression Profiling Technique for Cell Typing in Tissue Sections.
    Hilscher MM; Gyllborg D; Yokota C; Nilsson M
    Methods Mol Biol; 2020; 2148():313-329. PubMed ID: 32394391
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In Situ Single-Molecule RNA Genotyping Using Padlock Probes and Rolling Circle Amplification.
    Krzywkowski T; Hauling T; Nilsson M
    Methods Mol Biol; 2017; 1492():59-76. PubMed ID: 27822856
    [TBL] [Abstract][Full Text] [Related]  

  • 3. SCRINSHOT enables spatial mapping of cell states in tissue sections with single-cell resolution.
    Sountoulidis A; Liontos A; Nguyen HP; Firsova AB; Fysikopoulos A; Qian X; Seeger W; Sundström E; Nilsson M; Samakovlis C
    PLoS Biol; 2020 Nov; 18(11):e3000675. PubMed ID: 33216742
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In situ hybridization assay for circular RNA visualization based on padlock probe and rolling circle amplification.
    Lin C; Xiao Z; Zhang X; Wu G
    Biochem Biophys Res Commun; 2022 Jun; 610():30-34. PubMed ID: 35430449
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hybridization-based in situ sequencing (HybISS) for spatially resolved transcriptomics in human and mouse brain tissue.
    Gyllborg D; Langseth CM; Qian X; Choi E; Salas SM; Hilscher MM; Lein ES; Nilsson M
    Nucleic Acids Res; 2020 Nov; 48(19):e112. PubMed ID: 32990747
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Efficient in situ detection of mRNAs using the Chlorella virus DNA ligase for padlock probe ligation.
    Schneider N; Meier M
    RNA; 2017 Feb; 23(2):250-256. PubMed ID: 27879431
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Detection of denitrification genes by in situ rolling circle amplification-fluorescence in situ hybridization to link metabolic potential with identity inside bacterial cells.
    Hoshino T; Schramm A
    Environ Microbiol; 2010 Sep; 12(9):2508-17. PubMed ID: 20406291
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Single-Cell Imaging of mRNA by Target RNA-Initiated RCA.
    Ren X; Wu Y; Deng R; Li J
    Methods Mol Biol; 2024; 2822():65-75. PubMed ID: 38907912
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Direct detection of mRNA expression in microbial cells by fluorescence in situ hybridization using RNase H-assisted rolling circle amplification.
    Takahashi H; Horio K; Kato S; Kobori T; Watanabe K; Aki T; Nakashimada Y; Okamura Y
    Sci Rep; 2020 Jun; 10(1):9588. PubMed ID: 32541674
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Target-catalyzed hairpin structure-mediated padlock cyclization for ultrasensitive rolling circle amplification.
    Song H; Yang Z; Jiang M; Zhang G; Gao Y; Shen Z; Wu ZS; Lou Y
    Talanta; 2019 Nov; 204():29-35. PubMed ID: 31357296
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Open-source, high-throughput targeted in situ transcriptomics for developmental and tissue biology.
    Lee H; Langseth CM; Salas SM; Sariyar S; Metousis A; Rueda-Alaña E; Bekiari C; Lundberg E; Garcı A-Moreno F; Grillo M; Nilsson M
    Development; 2024 Aug; 151(16):. PubMed ID: 39099456
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multiplexed in situ RNA imaging by combFISH.
    Liu Y; Chen J; Lin C; Ke R
    Anal Bioanal Chem; 2024 Jul; 416(16):3765-3774. PubMed ID: 38775954
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Photothermal mediated rolling circle amplification toward specific and direct in situ mRNA detection.
    Liu D; Li W; Yang M; Qiu L; Pian H; Huang Y; Chen M; Zheng Z
    Biosens Bioelectron; 2021 Nov; 192():113507. PubMed ID: 34330037
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular crowding improves bead-based padlock rolling circle amplification.
    Sasaki N; Gunji Y; Kase C; Sato K
    Anal Biochem; 2017 Feb; 519():15-18. PubMed ID: 27940012
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Direct RNA targeted in situ sequencing for transcriptomic profiling in tissue.
    Lee H; Marco Salas S; Gyllborg D; Nilsson M
    Sci Rep; 2022 May; 12(1):7976. PubMed ID: 35562352
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improved in situ sequencing for high-resolution targeted spatial transcriptomic analysis in tissue sections.
    Tang X; Chen J; Zhang X; Liu X; Xie Z; Wei K; Qiu J; Ma W; Lin C; Ke R
    J Genet Genomics; 2023 Sep; 50(9):652-660. PubMed ID: 36796537
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Padlock Probe-Based Targeted In Situ Sequencing: Overview of Methods and Applications.
    Magoulopoulou A; Salas SM; Tiklová K; Samuelsson ER; Hilscher MM; Nilsson M
    Annu Rev Genomics Hum Genet; 2023 Aug; 24():133-150. PubMed ID: 37018847
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Amplification of circularizable probes for the detection of target nucleic acids and proteins.
    Zhang D; Wu J; Ye F; Feng T; Lee I; Yin B
    Clin Chim Acta; 2006 Jan; 363(1-2):61-70. PubMed ID: 16122721
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lighting Up Nucleic Acid Modifications in Single Cells with DNA-Encoded Amplification.
    Chen F; Xue J; Bai M; Fan C; Zhao Y
    Acc Chem Res; 2022 Aug; 55(16):2248-2259. PubMed ID: 35904502
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Detection of low-copy-number genomic DNA sequences in individual bacterial cells by using peptide nucleic acid-assisted rolling-circle amplification and fluorescence in situ hybridization.
    Smolina I; Lee C; Frank-Kamenetskii M
    Appl Environ Microbiol; 2007 Apr; 73(7):2324-8. PubMed ID: 17293504
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.