These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
186 related articles for article (PubMed ID: 32394391)
21. Single molecule chromogenic in situ hybridization assay for RNA visualization in fixed cells and tissues. Jiang M; Liu L; Hong C; Chen D; Yao X; Chen X; Lin C; Ke R RNA; 2019 Aug; 25(8):1038-1046. PubMed ID: 31064786 [TBL] [Abstract][Full Text] [Related]
22. A highly sensitive target-primed rolling circle amplification (TPRCA) method for fluorescent in situ hybridization detection of microRNA in tumor cells. Ge J; Zhang LL; Liu SJ; Yu RQ; Chu X Anal Chem; 2014 Feb; 86(3):1808-15. PubMed ID: 24417222 [TBL] [Abstract][Full Text] [Related]
23. Diagnosis of genetic abnormalities in developmentally delayed patients: a new strategy combining MLPA and array-CGH. Kriek M; Knijnenburg J; White SJ; Rosenberg C; den Dunnen JT; van Ommen GJ; Tanke HJ; Breuning MH; Szuhai K Am J Med Genet A; 2007 Mar; 143A(6):610-4. PubMed ID: 17318845 [No Abstract] [Full Text] [Related]
24. Increasingly branched rolling circle amplification for the cancer gene detection. Li H; Xu J; Wang Z; Wu ZS; Jia L Biosens Bioelectron; 2016 Dec; 86():1067-1073. PubMed ID: 27569300 [TBL] [Abstract][Full Text] [Related]
25. Combinatorial analysis of mRNA expression patterns in mouse embryos using hybridization chain reaction. Huss D; Choi HM; Readhead C; Fraser SE; Pierce NA; Lansford R Cold Spring Harb Protoc; 2015 Mar; 2015(3):259-68. PubMed ID: 25734068 [TBL] [Abstract][Full Text] [Related]
26. In situ genotyping individual DNA molecules by target-primed rolling-circle amplification of padlock probes. Larsson C; Koch J; Nygren A; Janssen G; Raap AK; Landegren U; Nilsson M Nat Methods; 2004 Dec; 1(3):227-32. PubMed ID: 15782198 [TBL] [Abstract][Full Text] [Related]
27. Toehold-mediated ligation-free rolling circle amplification enables sensitive and rapid imaging of messenger RNAs in situ in cells. Chen J; Zhang Y; Chen D; Wang T; Yin W; Yang HH; Xu Y; Chen JX; Dai Z; Zou X Anal Chim Acta; 2021 May; 1160():338463. PubMed ID: 33894961 [TBL] [Abstract][Full Text] [Related]
28. Bead-based padlock rolling circle amplification for single DNA molecule counting. Sato K; Ishii R; Sasaki N; Sato K; Nilsson M Anal Biochem; 2013 Jun; 437(1):43-5. PubMed ID: 23467098 [TBL] [Abstract][Full Text] [Related]
29. In situ detection and genotyping of individual mRNA molecules. Larsson C; Grundberg I; Söderberg O; Nilsson M Nat Methods; 2010 May; 7(5):395-7. PubMed ID: 20383134 [TBL] [Abstract][Full Text] [Related]
30. Nicking-enhanced rolling circle amplification for sensitive fluorescent detection of cancer-related microRNAs. Gao Z; Wu C; Lv S; Wang C; Zhang N; Xiao S; Han Y; Xu H; Zhang Y; Li F; Lyu J; Shen Z Anal Bioanal Chem; 2018 Oct; 410(26):6819-6826. PubMed ID: 30066196 [TBL] [Abstract][Full Text] [Related]
31. Click chemistry-based amplification and detection of endogenous RNA and DNA molecules in situ using clampFISH probes. Tavakoli S; Liu Y; Potts JL; Rouhanifard SH Methods Enzymol; 2020; 641():459-476. PubMed ID: 32713535 [TBL] [Abstract][Full Text] [Related]
32. Dense transcript profiling in single cells by image correlation decoding. Coskun AF; Cai L Nat Methods; 2016 Aug; 13(8):657-60. PubMed ID: 27271198 [TBL] [Abstract][Full Text] [Related]
33. Mechanistic investigation of bead-based padlock rolling circle amplification under molecular crowding conditions. Sasaki N; Kase C; Chou M; Nakazato G; Sato K Anal Biochem; 2020 Mar; 593():113596. PubMed ID: 31987862 [TBL] [Abstract][Full Text] [Related]
34. Ligation-rolling circle amplification combined with γ-cyclodextrin mediated stemless molecular beacon for sensitive and specific genotyping of single-nucleotide polymorphism. Zou Z; Qing Z; He X; Wang K; He D; Shi H; Yang X; Qing T; Yang X Talanta; 2014 Jul; 125():306-12. PubMed ID: 24840448 [TBL] [Abstract][Full Text] [Related]
35. Advances in fluorescence in situ hybridization. Raap AK Mutat Res; 1998 May; 400(1-2):287-98. PubMed ID: 9685683 [TBL] [Abstract][Full Text] [Related]
36. Lock and roll: single-molecule genotyping in situ using padlock probes and rolling-circle amplification. Nilsson M Histochem Cell Biol; 2006 Aug; 126(2):159-64. PubMed ID: 16807721 [TBL] [Abstract][Full Text] [Related]
37. Visualization of individual microRNA molecules in fixed cells and tissues using target-primed padlock probe assay. Lin C; Jiang M; Duan S; Qiu J; Hong Y; Wang X; Chen X; Ke R Biochem Biophys Res Commun; 2020 Jun; 526(3):607-611. PubMed ID: 32247612 [TBL] [Abstract][Full Text] [Related]
38. A microfluidic platform towards automated multiplexed in situ sequencing. Maïno N; Hauling T; Cappi G; Madaboosi N; Dupouy DG; Nilsson M Sci Rep; 2019 Mar; 9(1):3542. PubMed ID: 30837556 [TBL] [Abstract][Full Text] [Related]
39. In situ detection of messenger RNA using digoxigenin-labeled oligonucleotides and rolling circle amplification. Zhou Y; Calciano M; Hamann S; Leamon JH; Strugnell T; Christian MW; Lizardi PM Exp Mol Pathol; 2001 Jun; 70(3):281-8. PubMed ID: 11418007 [TBL] [Abstract][Full Text] [Related]
40. A DNA nanomachine based on rolling circle amplification-bridged two-stage exonuclease III-assisted recycling strategy for label-free multi-amplified biosensing of nucleic acid. Xue Q; Lv Y; Cui H; Gu X; Zhang S; Liu J Anal Chim Acta; 2015 Jan; 856():103-9. PubMed ID: 25542364 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]