These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
174 related articles for article (PubMed ID: 32394498)
61. Estimating interactions in individual participant data meta-analysis: a comparison of methods in practice. Walker R; Stewart L; Simmonds M Syst Rev; 2022 Oct; 11(1):211. PubMed ID: 36199096 [TBL] [Abstract][Full Text] [Related]
62. A robust DF-REML framework for variance components estimation in genetic studies. Lourenço VM; Rodrigues PC; Pires AM; Piepho HP Bioinformatics; 2017 Nov; 33(22):3584-3594. PubMed ID: 29036274 [TBL] [Abstract][Full Text] [Related]
63. Simulation study on covariance component estimation for two binary traits in an underlying continuous scale. Mäntysaari EA; Quaas RL; Gröhn YT J Dairy Sci; 1991 Feb; 74(2):580-91. PubMed ID: 2045564 [TBL] [Abstract][Full Text] [Related]
64. Quantifying heterogeneity in individual participant data meta-analysis with binary outcomes. Chen B; Benedetti A Syst Rev; 2017 Dec; 6(1):243. PubMed ID: 29208048 [TBL] [Abstract][Full Text] [Related]
65. Systematic review of methods for individual patient data meta- analysis with binary outcomes. Thomas D; Radji S; Benedetti A BMC Med Res Methodol; 2014 Jun; 14():79. PubMed ID: 24943877 [TBL] [Abstract][Full Text] [Related]
66. Maximum likelihood estimation based on Newton-Raphson iteration for the bivariate random effects model in test accuracy meta-analysis. Willis BH; Baragilly M; Coomar D Stat Methods Med Res; 2020 Apr; 29(4):1197-1211. PubMed ID: 31184270 [TBL] [Abstract][Full Text] [Related]
67. A multilevel model framework for meta-analysis of clinical trials with binary outcomes. Turner RM; Omar RZ; Yang M; Goldstein H; Thompson SG Stat Med; 2000 Dec; 19(24):3417-32. PubMed ID: 11122505 [TBL] [Abstract][Full Text] [Related]
68. Hierarchical modelling of variance components makes analysis of resolvable incomplete block designs more efficient. Studnicki M; Piepho HP Theor Appl Genet; 2024 May; 137(6):134. PubMed ID: 38753078 [TBL] [Abstract][Full Text] [Related]
69. Relative efficiency of using summary versus individual data in random-effects meta-analysis. Chen DG; Liu D; Min X; Zhang H Biometrics; 2020 Dec; 76(4):1319-1329. PubMed ID: 32056197 [TBL] [Abstract][Full Text] [Related]
70. A primer on synthesizing individual participant data obtained from complex sampling surveys: A two-stage IPD meta-analysis approach. Campos DG; Cheung MW; Scherer R Psychol Methods; 2023 Jan; ():. PubMed ID: 36622718 [TBL] [Abstract][Full Text] [Related]
71. A comparison via simulation of least squares Lehmann-Scheffé estimators of two variances and heritability with those of restricted maximum likelihood. Slanger WD; Carlson JK J Anim Sci; 2003 Aug; 81(8):1950-8. PubMed ID: 12926777 [TBL] [Abstract][Full Text] [Related]
72. Bias and precision of methods for estimating the difference in restricted mean survival time from an individual patient data meta-analysis. Lueza B; Rotolo F; Bonastre J; Pignon JP; Michiels S BMC Med Res Methodol; 2016 Mar; 16():37. PubMed ID: 27025706 [TBL] [Abstract][Full Text] [Related]
74. Estimating the Complier Average Causal Effect in a Meta-Analysis of Randomized Clinical Trials With Binary Outcomes Accounting for Noncompliance: A Generalized Linear Latent and Mixed Model Approach. Zhou T; Zhou J; Hodges JS; Lin L; Chen Y; Cole SR; Chu H Am J Epidemiol; 2022 Jan; 191(1):220-229. PubMed ID: 34564720 [TBL] [Abstract][Full Text] [Related]
75. A comparison of methods for fixed effects meta-analysis of individual patient data with time to event outcomes. Tudur Smith C; Williamson PR Clin Trials; 2007; 4(6):621-30. PubMed ID: 18042571 [TBL] [Abstract][Full Text] [Related]
76. An Empirical Comparison of Meta- and Mega-Analysis With Data From the ENIGMA Obsessive-Compulsive Disorder Working Group. Boedhoe PSW; Heymans MW; Schmaal L; Abe Y; Alonso P; Ameis SH; Anticevic A; Arnold PD; Batistuzzo MC; Benedetti F; Beucke JC; Bollettini I; Bose A; Brem S; Calvo A; Calvo R; Cheng Y; Cho KIK; Ciullo V; Dallaspezia S; Denys D; Feusner JD; Fitzgerald KD; Fouche JP; Fridgeirsson EA; Gruner P; Hanna GL; Hibar DP; Hoexter MQ; Hu H; Huyser C; Jahanshad N; James A; Kathmann N; Kaufmann C; Koch K; Kwon JS; Lazaro L; Lochner C; Marsh R; Martínez-Zalacaín I; Mataix-Cols D; Menchón JM; Minuzzi L; Morer A; Nakamae T; Nakao T; Narayanaswamy JC; Nishida S; Nurmi EL; O'Neill J; Piacentini J; Piras F; Piras F; Reddy YCJ; Reess TJ; Sakai Y; Sato JR; Simpson HB; Soreni N; Soriano-Mas C; Spalletta G; Stevens MC; Szeszko PR; Tolin DF; van Wingen GA; Venkatasubramanian G; Walitza S; Wang Z; Yun JY; ; Thompson PM; Stein DJ; van den Heuvel OA; Twisk JWR Front Neuroinform; 2018; 12():102. PubMed ID: 30670959 [No Abstract] [Full Text] [Related]
77. A comparison of methods for meta-analysis of a small number of studies with binary outcomes. Mathes T; Kuss O Res Synth Methods; 2018 Sep; 9(3):366-381. PubMed ID: 29573180 [TBL] [Abstract][Full Text] [Related]
78. Evaluating the performance of propensity score matching based approaches in individual patient data meta-analysis. Johara FT; Benedetti A; Platt R; Menzies D; Viiklepp P; Schaaf S; Chan E BMC Med Res Methodol; 2021 Nov; 21(1):257. PubMed ID: 34814845 [TBL] [Abstract][Full Text] [Related]
79. Transforming the Model T: random effects meta-analysis with stable weights. Malloy MJ; Prendergast LA; Staudte RG Stat Med; 2013 May; 32(11):1842-64. PubMed ID: 23097338 [TBL] [Abstract][Full Text] [Related]