These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

305 related articles for article (PubMed ID: 32394584)

  • 21. Highly Enhanced Photoelectrochemical Water Oxidation Efficiency Based on Triadic Quantum Dot/Layered Double Hydroxide/BiVO4 Photoanodes.
    Tang Y; Wang R; Yang Y; Yan D; Xiang X
    ACS Appl Mater Interfaces; 2016 Aug; 8(30):19446-55. PubMed ID: 27419597
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Harvesting the infrared part of solar light to promote charge transfer in Bi
    Zhao F; Sheng H; Sun Q; Wang J; Liu Q; Hu Z; He B; Wang Y; Li Z; Liu X
    J Colloid Interface Sci; 2022 Sep; 621():267-274. PubMed ID: 35461141
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Combining Bulk/Surface Engineering of Hematite To Synergistically Improve Its Photoelectrochemical Water Splitting Performance.
    Yuan Y; Gu J; Ye KH; Chai Z; Yu X; Chen X; Zhao C; Zhang Y; Mai W
    ACS Appl Mater Interfaces; 2016 Jun; 8(25):16071-7. PubMed ID: 27275649
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A Cobalt-Based Metal-Organic Framework as Cocatalyst on BiVO
    Zhang W; Li R; Zhao X; Chen Z; Law AW; Zhou K
    ChemSusChem; 2018 Aug; 11(16):2710-2716. PubMed ID: 29975458
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Polypyrrole Serving as Multifunctional Surface Modifier for Photoanode Enables Efficient Photoelectrochemical Water Oxidation.
    Xu W; Meng L; Tian W; Li S; Cao F; Li L
    Small; 2022 Jan; 18(1):e2105240. PubMed ID: 34741420
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A Transparent, High-Performance, and Stable Sb
    Wang L; Lian W; Liu B; Lv H; Zhang Y; Wu X; Wang T; Gong J; Chen T; Xu H
    Adv Mater; 2022 Jul; 34(29):e2200723. PubMed ID: 35580906
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Enriched Surface Oxygen Vacancies of Photoanodes by Photoetching with Enhanced Charge Separation.
    Feng S; Wang T; Liu B; Hu C; Li L; Zhao ZJ; Gong J
    Angew Chem Int Ed Engl; 2020 Jan; 59(5):2044-2048. PubMed ID: 31769570
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Surface Modification of Hematite Photoanodes with CeO
    Ahmed MG; Zhang M; Tay YF; Chiam SY; Wong LH
    ChemSusChem; 2020 Oct; 13(20):5489-5496. PubMed ID: 32776429
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Photoelectrochemical Solar Water Splitting: The Role of the Carbon Nanomaterials in Bismuth Vanadate Composite Photoanodes toward Efficient Charge Separation and Transport.
    Prakash J; Prasad U; Alexander R; Bahadur J; Dasgupta K; Kannan ANM
    Langmuir; 2019 Nov; 35(45):14492-14504. PubMed ID: 31618038
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Quaternary Core-Shell Oxynitride Nanowire Photoanode Containing a Hole-Extraction Gradient for Photoelectrochemical Water Oxidation.
    Ma Z; Thersleff T; Görne AL; Cordes N; Liu Y; Jakobi S; Rokicinska A; Schichtl ZG; Coridan RH; Kustrowski P; Schnick W; Dronskowski R; Slabon A
    ACS Appl Mater Interfaces; 2019 May; 11(21):19077-19086. PubMed ID: 31067020
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Enhanced Spatial Charge Separation in a Niobium and Tantalum Nitride Core-Shell Photoanode: In Situ Interface Bonding for Efficient Solar Water Splitting.
    Zhang B; Fan Z; Chen Y; Feng C; Li S; Li Y
    Angew Chem Int Ed Engl; 2023 Sep; 62(36):e202305123. PubMed ID: 37462518
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Enhanced Solar Water Splitting by Swift Charge Separation in Au/FeOOH Sandwiched Single-Crystalline Fe
    Wang L; Nguyen NT; Zhang Y; Bi Y; Schmuki P
    ChemSusChem; 2017 Jul; 10(13):2720-2727. PubMed ID: 28437588
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Synergies of co-doping in ultra-thin hematite photoanodes for solar water oxidation: In and Ti as representative case.
    Singh AP; Tossi C; Tittonen I; Hellman A; Wickman B
    RSC Adv; 2020 Sep; 10(55):33307-33316. PubMed ID: 35515023
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Facile and Large-Area Preparation of Porous Ag
    Cao Q; Yu J; Yuan K; Zhong M; Delaunay JJ
    ACS Appl Mater Interfaces; 2017 Jun; 9(23):19507-19512. PubMed ID: 28560876
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cu-Ion-Implanted and Polymeric Carbon Nitride-Decorated TiO
    Wang L; Si W; Ye Y; Wang S; Hou F; Hou X; Cai H; Dou SX; Liang J
    ACS Appl Mater Interfaces; 2021 Sep; 13(37):44184-44194. PubMed ID: 34499482
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Efficient Acidic Photoelectrochemical Water Splitting Enabled by Ru Single Atoms Anchored on Hematite Photoanodes.
    Li TT; Cui JY; Xu M; Song K; Yin ZH; Meng C; Liu H; Wang JJ
    Nano Lett; 2024 Jan; 24(3):958-965. PubMed ID: 38207219
    [TBL] [Abstract][Full Text] [Related]  

  • 37. GaP/GaNP Heterojunctions for Efficient Solar-Driven Water Oxidation.
    Kargar A; Sukrittanon S; Zhou C; Ro YG; Pan X; Dayeh SA; Tu CW; Jin S
    Small; 2017 Jun; 13(21):. PubMed ID: 28371293
    [TBL] [Abstract][Full Text] [Related]  

  • 38. CuWO4 Nanoflake Array-Based Single-Junction and Heterojunction Photoanodes for Photoelectrochemical Water Oxidation.
    Ye W; Chen F; Zhao F; Han N; Li Y
    ACS Appl Mater Interfaces; 2016 Apr; 8(14):9211-7. PubMed ID: 27011376
    [TBL] [Abstract][Full Text] [Related]  

  • 39. High-performance and stable photoelectrochemical water splitting cell with organic-photoactive-layer-based photoanode.
    Yu JM; Lee J; Kim YS; Song J; Oh J; Lee SM; Jeong M; Kim Y; Kwak JH; Cho S; Yang C; Jang JW
    Nat Commun; 2020 Nov; 11(1):5509. PubMed ID: 33139804
    [TBL] [Abstract][Full Text] [Related]  

  • 40. NiO Nanoparticles Anchored on Phosphorus-Doped α-Fe
    Li F; Li J; Zhang J; Gao L; Long X; Hu Y; Li S; Jin J; Ma J
    ChemSusChem; 2018 Jul; 11(13):2156-2164. PubMed ID: 29768719
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.