These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
224 related articles for article (PubMed ID: 32394603)
1. The early, long-term inhibition of brain-derived neurotrophic factor improves voiding, and storage dysfunctions in mice with spinal cord injury. Wada N; Yoshimura N; Kurobe M; Saito T; Tyagi P; Kakizaki H Neurourol Urodyn; 2020 Jun; 39(5):1345-1354. PubMed ID: 32394603 [TBL] [Abstract][Full Text] [Related]
2. Therapeutic effects of inhibition of brain-derived neurotrophic factor on voiding dysfunction in mice with spinal cord injury. Wada N; Shimizu T; Shimizu N; Kurobe M; de Groat WC; Tyagi P; Kakizaki H; Yoshimura N Am J Physiol Renal Physiol; 2019 Nov; 317(5):F1305-F1310. PubMed ID: 31566429 [TBL] [Abstract][Full Text] [Related]
3. Time-dependent progression of neurogenic lower urinary tract dysfunction after spinal cord injury in the mouse model. Saito T; Gotoh D; Wada N; Tyagi P; Minagawa T; Ogawa T; Ishizuka O; Yoshimura N Am J Physiol Renal Physiol; 2021 Jul; 321(1):F26-F32. PubMed ID: 33969698 [TBL] [Abstract][Full Text] [Related]
4. The effect of neutralization of nerve growth factor (NGF) on bladder and urethral dysfunction in mice with spinal cord injury. Wada N; Shimizu T; Shimizu N; de Groat WC; Kanai AJ; Tyagi P; Kakizaki H; Yoshimura N Neurourol Urodyn; 2018 Aug; 37(6):1889-1896. PubMed ID: 29516546 [TBL] [Abstract][Full Text] [Related]
5. Role of p38 MAP kinase signaling pathways in storage and voiding dysfunction in mice with spinal cord injury. Shimizu N; Wada N; Shimizu T; Suzuki T; Kurobe M; Kanai AJ; de Groat WC; Hashimoto M; Hirayama A; Uemura H; Yoshimura N Neurourol Urodyn; 2020 Jan; 39(1):108-115. PubMed ID: 31579964 [TBL] [Abstract][Full Text] [Related]
6. The role of capsaicin-sensitive C-fiber afferent pathways in the control of micturition in spinal-intact and spinal cord-injured mice. Kadekawa K; Majima T; Shimizu T; Wada N; de Groat WC; Kanai AJ; Goto M; Yoshiyama M; Sugaya K; Yoshimura N Am J Physiol Renal Physiol; 2017 Sep; 313(3):F796-F804. PubMed ID: 28637786 [TBL] [Abstract][Full Text] [Related]
7. Improvement of lower urinary tract dysfunction by a monoacylglycerol lipase inhibitor in mice with spinal cord injury. Cho KJ; Hashimoto M; Karnup S; Matsuoka K; Kamijo T; Kim JC; Koh JS; Yoshimura N Neurourol Urodyn; 2024 Jun; 43(5):1207-1216. PubMed ID: 38533637 [TBL] [Abstract][Full Text] [Related]
8. The role of capsaicin-sensitive afferent fibers in the lower urinary tract dysfunction induced by chronic spinal cord injury in rats. Cheng CL; de Groat WC Exp Neurol; 2004 Jun; 187(2):445-54. PubMed ID: 15144870 [TBL] [Abstract][Full Text] [Related]
9. Effects of a new β3-adrenoceptor agonist, vibegron, on neurogenic bladder dysfunction and remodeling in mice with spinal cord injury. Gotoh D; Shimizu N; Wada N; Kadekawa K; Saito T; Mizoguchi S; Morizawa Y; Hori S; Miyake M; Torimoto K; de Groat WC; Fujimoto K; Yoshimura N Neurourol Urodyn; 2020 Nov; 39(8):2120-2127. PubMed ID: 32816344 [TBL] [Abstract][Full Text] [Related]
10. Post-injury bladder management strategy influences lower urinary tract dysfunction in the mouse model of spinal cord injury. Wada N; Shimizu T; Takai S; Shimizu N; Kanai AJ; Tyagi P; Kakizaki H; Yoshimura N Neurourol Urodyn; 2017 Jun; 36(5):1301-1305. PubMed ID: 27778376 [TBL] [Abstract][Full Text] [Related]
11. Therapeutic effects of a soluble guanylate cyclase activator, BAY 60-2770, on lower urinary tract dysfunction in mice with spinal cord injury. Gotoh D; Saito T; Karnup S; Morizawa Y; Hori S; Nakai Y; Miyake M; Torimoto K; Fujimoto K; Yoshimura N Am J Physiol Renal Physiol; 2022 Oct; 323(4):F447-F454. PubMed ID: 35952343 [TBL] [Abstract][Full Text] [Related]
13. Improvement of lower urinary tract function by a selective serotonin 5-HT Lin CY; Sparks A; Lee YS Exp Neurol; 2020 Oct; 332():113395. PubMed ID: 32615138 [TBL] [Abstract][Full Text] [Related]
14. Antifibrosis treatment by inhibition of VEGF, FGF, and PDGF receptors improves bladder wall remodeling and detrusor overactivity in association with modulation of C-fiber afferent activity in mice with spinal cord injury. Kwon J; Lee EJ; Cho HJ; Jang JA; Han MS; Kwak E; Kim H; An J; Park D; Han S; Shimizu N; Suzuki T; Takaoka EI; Yoshimura N Neurourol Urodyn; 2021 Aug; 40(6):1460-1469. PubMed ID: 34015154 [TBL] [Abstract][Full Text] [Related]
15. Urodynamic effects of intravenous and intrathecal administration of E-series prostaglandin 1 receptor antagonist on detrusor overactivity in rats with spinal cord injury. Wada N; Kadekawa K; Majima T; Shimizu T; Tyagi P; Kakizaki H; Yoshimura N Neurourol Urodyn; 2018 Jan; 37(1):132-137. PubMed ID: 28608967 [TBL] [Abstract][Full Text] [Related]
16. Characterization of bladder and external urethral activity in mice with or without spinal cord injury--a comparison study with rats. Kadekawa K; Yoshimura N; Majima T; Wada N; Shimizu T; Birder LA; Kanai AJ; de Groat WC; Sugaya K; Yoshiyama M Am J Physiol Regul Integr Comp Physiol; 2016 Apr; 310(8):R752-8. PubMed ID: 26818058 [TBL] [Abstract][Full Text] [Related]
18. Bladder and urethral sphincter responses evoked by microstimulation of S2 sacral spinal cord in spinal cord intact and chronic spinal cord injured cats. Tai C; Booth AM; de Groat WC; Roppolo JR Exp Neurol; 2004 Nov; 190(1):171-83. PubMed ID: 15473990 [TBL] [Abstract][Full Text] [Related]
19. Effect of Early Sacral Neuromodulation on Bladder Function in a Rat Model of Incomplete Spinal Cord Injury Due to Focal Contusion. Lee YJ; Yoon CY; Lee MS; Song BD; Lee SW; Jeong SJ Neuromodulation; 2019 Aug; 22(6):697-702. PubMed ID: 30506765 [TBL] [Abstract][Full Text] [Related]
20. Effect of amniotic fluid stem cell transplantation on the recovery of bladder dysfunction in spinal cord-injured rats. Liang CC; Shaw SS; Ko YS; Huang YH; Lee TH Sci Rep; 2020 Jun; 10(1):10030. PubMed ID: 32572272 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]