BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 32395697)

  • 1. Succinate accumulation drives ischaemia-reperfusion injury during organ transplantation.
    Martin JL; Costa ASH; Gruszczyk AV; Beach TE; Allen FM; Prag HA; Hinchy EC; Mahbubani K; Hamed M; Tronci L; Nikitopoulou E; James AM; Krieg T; Robinson AJ; Huang MM; Caldwell ST; Logan A; Pala L; Hartley RC; Frezza C; Saeb-Parsy K; Murphy MP
    Nat Metab; 2019 Sep; 1():966-974. PubMed ID: 32395697
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ischaemic accumulation of succinate controls reperfusion injury through mitochondrial ROS.
    Chouchani ET; Pell VR; Gaude E; Aksentijević D; Sundier SY; Robb EL; Logan A; Nadtochiy SM; Ord ENJ; Smith AC; Eyassu F; Shirley R; Hu CH; Dare AJ; James AM; Rogatti S; Hartley RC; Eaton S; Costa ASH; Brookes PS; Davidson SM; Duchen MR; Saeb-Parsy K; Shattock MJ; Robinson AJ; Work LM; Frezza C; Krieg T; Murphy MP
    Nature; 2014 Nov; 515(7527):431-435. PubMed ID: 25383517
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A model of mitochondrial superoxide production during ischaemia-reperfusion injury for therapeutic development and mechanistic understanding.
    Sorby-Adams A; Prime TA; Miljkovic JL; Prag HA; Krieg T; Murphy MP
    Redox Biol; 2024 Jun; 72():103161. PubMed ID: 38677214
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inhibiting Succinate Release Worsens Cardiac Reperfusion Injury by Enhancing Mitochondrial Reactive Oxygen Species Generation.
    Milliken AS; Nadtochiy SM; Brookes PS
    J Am Heart Assoc; 2022 Jul; 11(13):e026135. PubMed ID: 35766275
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Succinate metabolism: a new therapeutic target for myocardial reperfusion injury.
    Pell VR; Chouchani ET; Frezza C; Murphy MP; Krieg T
    Cardiovasc Res; 2016 Jul; 111(2):134-41. PubMed ID: 27194563
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Succinate Accumulation and Ischemia-Reperfusion Injury: Of Mice but Not Men, a Study in Renal Ischemia-Reperfusion.
    Wijermars LG; Schaapherder AF; Kostidis S; Wüst RC; Lindeman JH
    Am J Transplant; 2016 Sep; 16(9):2741-6. PubMed ID: 26999803
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Selective organ ischaemia/reperfusion identifies liver as the key driver of the post-injury plasma metabolome derangements.
    Clendenen N; Nunns GR; Moore EE; Gonzalez E; Chapman M; Reisz JA; Peltz E; Fragoso M; Nemkov T; Wither MJ; Sauaia A; Silliman CC; Hansen K; Banerjee A; D'Alessandro A; Moore HB
    Blood Transfus; 2019 Sep; 17(5):347-356. PubMed ID: 30747701
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ischemic preconditioning protects against cardiac ischemia reperfusion injury without affecting succinate accumulation or oxidation.
    Pell VR; Spiroski AM; Mulvey J; Burger N; Costa ASH; Logan A; Gruszczyk AV; Rosa T; James AM; Frezza C; Murphy MP; Krieg T
    J Mol Cell Cardiol; 2018 Oct; 123():88-91. PubMed ID: 30118790
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of warm ischaemia combined with cold preservation on the hypoxia-inducible factor 1α pathway in an experimental renal autotransplantation model.
    Delpech PO; Thuillier R; Le Pape S; Rossard L; Jayle C; Billault C; Goujon JM; Hauet T
    Br J Surg; 2014 Dec; 101(13):1739-50. PubMed ID: 25331755
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inhibition of pyruvate dehydrogenase kinase 4 ameliorates kidney ischemia-reperfusion injury by reducing succinate accumulation during ischemia and preserving mitochondrial function during reperfusion.
    Oh CJ; Kim MJ; Lee JM; Kim DH; Kim IY; Park S; Kim Y; Lee KB; Lee SH; Lim CW; Kim M; Lee JY; Pagire HS; Pagire SH; Bae MA; Chanda D; Thoudam T; Khang AR; Harris RA; Ahn JH; Jeon JH; Lee IK
    Kidney Int; 2023 Oct; 104(4):724-739. PubMed ID: 37399974
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Increased Succinate Accumulation Induces ROS Generation in
    Kamarauskaite J; Baniene R; Trumbeckas D; Strazdauskas A; Trumbeckaite S
    Biomed Res Int; 2020; 2020():8855585. PubMed ID: 33102598
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metabolic adaptations during extreme anoxia in the turtle heart and their implications for ischemia-reperfusion injury.
    Bundgaard A; James AM; Gruszczyk AV; Martin J; Murphy MP; Fago A
    Sci Rep; 2019 Feb; 9(1):2850. PubMed ID: 30808950
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The mitochondria-targeted anti-oxidant MitoQ decreases ischemia-reperfusion injury in a murine syngeneic heart transplant model.
    Dare AJ; Logan A; Prime TA; Rogatti S; Goddard M; Bolton EM; Bradley JA; Pettigrew GJ; Murphy MP; Saeb-Parsy K
    J Heart Lung Transplant; 2015 Nov; 34(11):1471-80. PubMed ID: 26140808
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Targeting succinate metabolism to decrease brain injury upon mechanical thrombectomy treatment of ischemic stroke.
    Mottahedin A; Prag HA; Dannhorn A; Mair R; Schmidt C; Yang M; Sorby-Adams A; Lee JJ; Burger N; Kulaveerasingam D; Huang MM; Pluchino S; Peruzzotti-Jametti L; Goodwin R; Frezza C; Murphy MP; Krieg T
    Redox Biol; 2023 Feb; 59():102600. PubMed ID: 36630820
    [TBL] [Abstract][Full Text] [Related]  

  • 15. H
    Dugbartey GJ; Juriasingani S; Zhang MY; Sener A
    Pharmacol Res; 2021 Oct; 172():105842. PubMed ID: 34450311
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Detrimental effects of prolonged warm renal ischaemia-reperfusion injury are abrogated by supplemental hydrogen sulphide: an analysis using real-time intravital microscopy and polymerase chain reaction.
    Zhu JX; Kalbfleisch M; Yang YX; Bihari R; Lobb I; Davison M; Mok A; Cepinskas G; Lawendy AR; Sener A
    BJU Int; 2012 Dec; 110(11 Pt C):E1218-27. PubMed ID: 23046222
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Accumulation of Succinate in Cardiac Ischemia Primarily Occurs via Canonical Krebs Cycle Activity.
    Zhang J; Wang YT; Miller JH; Day MM; Munger JC; Brookes PS
    Cell Rep; 2018 May; 23(9):2617-2628. PubMed ID: 29847793
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kidney graft outcome using an anti-Xa therapeutic strategy in an experimental model of severe ischaemia-reperfusion injury.
    Tillet S; Giraud S; Delpech PO; Thuillier R; Ameteau V; Goujon JM; Renelier B; Macchi L; Hauet T; Mauco G
    Br J Surg; 2015 Jan; 102(1):132-42; discussion 142. PubMed ID: 25402331
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Supplemental hydrogen sulphide protects transplant kidney function and prolongs recipient survival after prolonged cold ischaemia-reperfusion injury by mitigating renal graft apoptosis and inflammation.
    Lobb I; Mok A; Lan Z; Liu W; Garcia B; Sener A
    BJU Int; 2012 Dec; 110(11 Pt C):E1187-95. PubMed ID: 23157304
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recovery of donor hearts after circulatory death with normothermic extracorporeal machine perfusion.
    Tolboom H; Makhro A; Rosser BA; Wilhelm MJ; Bogdanova A; Falk V
    Eur J Cardiothorac Surg; 2015 Jan; 47(1):173-9; discussion 179. PubMed ID: 24727935
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.