These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 32396077)

  • 1. Intrinsic Tradeoffs in Multi-Covariate Imaging of Sub-Resolution Targets.
    Morgan MR; Trahey GE; Walker WF
    IEEE Trans Ultrason Ferroelectr Freq Control; 2020 Oct; 67(10):1980-1992. PubMed ID: 32396077
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthetic Aperture Focusing for Multi-Covariate Imaging of Sub-Resolution Targets.
    Morgan MR; Bottenus N; Trahey GE; Walker WF
    IEEE Trans Ultrason Ferroelectr Freq Control; 2020 Jun; 67(6):1166-1177. PubMed ID: 31940530
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multi-covariate Imaging of Sub-resolution Targets.
    Morgan MR; Trahey GE; Walker WF
    IEEE Trans Med Imaging; 2019 Jul; 38(7):1690-1700. PubMed ID: 31095479
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adaptive Models for Multi-Covariate Imaging of Sub-Resolution Targets (MIST).
    Ahmed R; Flint KM; Morgan MR; Trahey GE; Walker WF
    IEEE Trans Ultrason Ferroelectr Freq Control; 2022 Jul; 69(7):2303-2317. PubMed ID: 35613063
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Separation of mainlobe and sidelobe contributions to B-mode ultrasound images based on the aperture spectrum.
    Ali R; Mitcham T; Brickson L; Hu W; Doyley M; Rubens D; Ignjatovic Z; Duric N; Dahl J
    J Med Imaging (Bellingham); 2022 Nov; 9(6):067001. PubMed ID: 36337381
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Resolution and Speckle Reduction in Cardiac Imaging.
    Bottenus N; LeFevre M; Cleve J; Crowley AL; Trahey G
    IEEE Trans Ultrason Ferroelectr Freq Control; 2021 Apr; 68(4):1131-1143. PubMed ID: 33112742
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Beamforming and Speckle Reduction Using Neural Networks.
    Hyun D; Brickson LL; Looby KT; Dahl JJ
    IEEE Trans Ultrason Ferroelectr Freq Control; 2019 May; 66(5):898-910. PubMed ID: 30869612
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Compounding in synthetic aperture imaging.
    Hansen JM; Jensen JA
    IEEE Trans Ultrason Ferroelectr Freq Control; 2012 Sep; 59(9):2054-65. PubMed ID: 23007781
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Strain compounding: spatial resolution and performance on human images.
    Li PC; Wu CL
    Ultrasound Med Biol; 2001 Nov; 27(11):1535-41. PubMed ID: 11750753
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An ultrasonic imaging speckle-suppression and contrast-enhancement technique by means of frequency compounding and coded excitation.
    Sanchez JR; Oelze ML
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Jul; 56(7):1327-39. PubMed ID: 19574144
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Linear System Models for Ultrasonic Imaging: Intensity Signal Statistics.
    Abbey CK; Zhu Y; Bahramian S; Insana MF
    IEEE Trans Ultrason Ferroelectr Freq Control; 2017 Apr; 64(4):669-678. PubMed ID: 28092533
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Iterative image-domain decomposition for dual-energy CT.
    Niu T; Dong X; Petrongolo M; Zhu L
    Med Phys; 2014 Apr; 41(4):041901. PubMed ID: 24694132
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Speckle coherence of piecewise-stationary stochastic targets.
    Morgan MR; Trahey GE; Walker WF
    J Acoust Soc Am; 2019 Sep; 146(3):1721. PubMed ID: 31590494
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Incoherent Clutter Suppression Using Lag-One Coherence.
    Long W; Bottenus N; Trahey GE
    IEEE Trans Ultrason Ferroelectr Freq Control; 2020 Aug; 67(8):1544-1557. PubMed ID: 32142428
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adaptive beamforming applied to medical ultrasound imaging.
    Synnevåg JF; Austeng A; Holm S
    IEEE Trans Ultrason Ferroelectr Freq Control; 2007 Aug; 54(8):1606-13. PubMed ID: 17703664
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of element directivity on adaptive beamforming applied to high-frame-rate ultrasound.
    Hasegawa H; Kanai H
    IEEE Trans Ultrason Ferroelectr Freq Control; 2015 Mar; 62(3):511-23. PubMed ID: 25768817
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Speckle reduction in ultrasound medical images using adaptive filter based on second order statistics.
    Thakur A; Anand RS
    J Med Eng Technol; 2007; 31(4):263-79. PubMed ID: 17566930
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Contrast enhancement and robustness improvement of adaptive ultrasound imaging using forward-backward minimum variance beamforming.
    Asl BM; Mahloojifar A
    IEEE Trans Ultrason Ferroelectr Freq Control; 2011 Apr; 58(4):858-67. PubMed ID: 21507765
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improvement of performance of minimum variance beamformer by introducing cross covariance estimate.
    Hasegawa H; Nagaoka R
    J Med Ultrason (2001); 2020 Apr; 47(2):203-210. PubMed ID: 32078070
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improving Spatial Resolution Using Incoherent Subtraction of Receive Beams Having Different Apodizations.
    Agarwal A; Reeg J; Podkowa AS; Oelze ML
    IEEE Trans Ultrason Ferroelectr Freq Control; 2019 Jan; 66(1):5-17. PubMed ID: 30334791
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.