These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 32396086)

  • 21. Steering Capabilities of an Acoustic Lens for Transcranial Therapy: Numerical and Experimental Studies.
    Maimbourg G; Houdouin A; Deffieux T; Tanter M; Aubry JF
    IEEE Trans Biomed Eng; 2020 Jan; 67(1):27-37. PubMed ID: 30932823
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Ultrasonic reflection mode computed tomography through a skull bone.
    Ylitalo J; Koivukangas J; Oksman J
    IEEE Trans Biomed Eng; 1990 Nov; 37(11):1059-66. PubMed ID: 2276753
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Random calibration for accelerating MR-ARFI guided ultrasonic focusing in transcranial therapy.
    Liu N; Liutkus A; Aubry JF; Marsac L; Tanter M; Daudet L
    Phys Med Biol; 2015 Feb; 60(3):1069-85. PubMed ID: 25585885
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Multi-resolution simulation of focused ultrasound propagation through ovine skull from a single-element transducer.
    Yoon K; Lee W; Croce P; Cammalleri A; Yoo SS
    Phys Med Biol; 2018 May; 63(10):105001. PubMed ID: 29658494
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Correlation of ultrasound phase with physical skull properties.
    Clement GT; Hynynen K
    Ultrasound Med Biol; 2002 May; 28(5):617-24. PubMed ID: 12079698
    [TBL] [Abstract][Full Text] [Related]  

  • 26. An uncovered risk factor of sonothrombolysis: Substantial fluctuation of ultrasound transmittance through the human skull.
    Wang Z; Komatsu T; Mitsumura H; Nakata N; Ogawa T; Iguchi Y; Yokoyama M
    Ultrasonics; 2017 May; 77():168-175. PubMed ID: 28242510
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effect of skull porosity on ultrasound transmission and wave mode conversion at large incidence angles.
    Jing B; Strassle Rojas S; Lindsey BD
    Med Phys; 2023 May; 50(5):3092-3102. PubMed ID: 36810723
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Computational modeling of a single-element transcranial focused ultrasound transducer for subthalamic nucleus stimulation.
    Samoudi MA; Van Renterghem T; Botteldooren D
    J Neural Eng; 2019 Apr; 16(2):026015. PubMed ID: 30572313
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Skull Impact on the Ultrasound Beam Profile of Transcranial Focused Ultrasound Stimulation.
    Tsai PC; Gougheri HS; Kiani M
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():5188-5191. PubMed ID: 31947027
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Adaptive focusing for transcranial ultrasound imaging using dual arrays.
    Vignon F; Aubry JF; Tanter M; Margoum A; Fink M
    J Acoust Soc Am; 2006 Nov; 120(5 Pt 1):2737-45. PubMed ID: 17139734
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Differential evolution method to find optimal location of a single-element transducer for transcranial focused ultrasound therapy.
    Park TY; Kim HJ; Park SH; Chang WS; Kim H; Yoon K
    Comput Methods Programs Biomed; 2022 Jun; 219():106777. PubMed ID: 35397411
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Influence of the anisotropic mechanical properties of the skull in low-intensity focused ultrasound towards neuromodulation of the brain.
    Metwally MK; Han HS; Jeon HJ; Khang G; Kim TS
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():4565-8. PubMed ID: 24110750
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Registration of human skull computed tomography data to an ultrasound treatment space using a sparse high frequency ultrasound hemispherical array.
    O'Reilly MA; Jones RM; Birman G; Hynynen K
    Med Phys; 2016 Sep; 43(9):5063. PubMed ID: 27587036
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Full-wave acoustic and thermal modeling of transcranial ultrasound propagation and investigation of skull-induced aberration correction techniques: a feasibility study.
    Kyriakou A; Neufeld E; Werner B; Székely G; Kuster N
    J Ther Ultrasound; 2015; 3():11. PubMed ID: 26236478
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A rapid element pressure field simulation method for transcranial phase correction in focused ultrasound therapy.
    Xu P; Wu N; Shen G
    Phys Med Biol; 2023 Dec; 68(23):. PubMed ID: 37934058
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A numerical study of transcranial focused ultrasound beam propagation at low frequency.
    Yin X; Hynynen K
    Phys Med Biol; 2005 Apr; 50(8):1821-36. PubMed ID: 15815098
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Comparison of Transcranial Focused Ultrasound and Transcranial Pulse Stimulation for Neuromodulation: A Computational Study.
    Truong DQ; Thomas C; Hampstead BM; Datta A
    Neuromodulation; 2022 Jun; 25(4):606-613. PubMed ID: 35125300
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Increasing the transmission efficiency of transcranial ultrasound using a dual-mode conversion technique based on Lamb waves.
    Kang KC; Kim YH; Kim JN; Kabir M; Zhang Y; Ghanouni P; Park KK; Firouzi K; Khuri-Yakub BT
    J Acoust Soc Am; 2022 Mar; 151(3):2159. PubMed ID: 35364946
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A numerical study on the oblique focus in MR-guided transcranial focused ultrasound.
    Hughes A; Huang Y; Pulkkinen A; Schwartz ML; Lozano AM; Hynynen K
    Phys Med Biol; 2016 Nov; 61(22):8025-8043. PubMed ID: 27779134
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Characterization of ultrasound propagation through ex-vivo human temporal bone.
    Ammi AY; Mast TD; Huang IH; Abruzzo TA; Coussios CC; Shaw GJ; Holland CK
    Ultrasound Med Biol; 2008 Oct; 34(10):1578-89. PubMed ID: 18456391
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.