BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 32396087)

  • 1. A Novel Deep Learning Pipeline for Retinal Vessel Detection In Fluorescein Angiography.
    Ding L; Bawany MH; Kuriyan AE; Ramchandran RS; Wykoff CC; Sharma G
    IEEE Trans Image Process; 2020 May; ():. PubMed ID: 32396087
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Weakly-Supervised Vessel Detection in Ultra-Widefield Fundus Photography via Iterative Multi-Modal Registration and Learning.
    Ding L; Kuriyan AE; Ramchandran RS; Wykoff CC; Sharma G
    IEEE Trans Med Imaging; 2021 Oct; 40(10):2748-2758. PubMed ID: 32991281
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Combining Feature Correspondence With Parametric Chamfer Alignment: Hybrid Two-Stage Registration for Ultra-Widefield Retinal Images.
    Ding L; Kang TD; Kuriyan AE; Ramchandran RS; Wykoff CC; Sharma G
    IEEE Trans Biomed Eng; 2023 Feb; 70(2):523-532. PubMed ID: 35925847
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesizing multi-frame high-resolution fluorescein angiography images from retinal fundus images using generative adversarial networks.
    Li P; He Y; Wang P; Wang J; Shi G; Chen Y
    Biomed Eng Online; 2023 Feb; 22(1):16. PubMed ID: 36810105
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synergizing Deep Learning-Enabled Preprocessing and Human-AI Integration for Efficient Automatic Ground Truth Generation.
    Collazo C; Vargas I; Cara B; Weinheimer CJ; Grabau RP; Goldgof D; Hall L; Wickline SA; Pan H
    Bioengineering (Basel); 2024 Apr; 11(5):. PubMed ID: 38790302
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluating a 3D deep learning pipeline for cerebral vessel and intracranial aneurysm segmentation from computed tomography angiography-digital subtraction angiography image pairs.
    Patel TR; Patel A; Veeturi SS; Shah M; Waqas M; Monteiro A; Baig AA; Pinter N; Levy EI; Siddiqui AH; Tutino VM
    Neurosurg Focus; 2023 Jun; 54(6):E13. PubMed ID: 37552697
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On the objectivity, reliability, and validity of deep learning enabled bioimage analyses.
    Segebarth D; Griebel M; Stein N; von Collenberg CR; Martin C; Fiedler D; Comeras LB; Sah A; Schoeffler V; Lüffe T; Dürr A; Gupta R; Sasi M; Lillesaar C; Lange MD; Tasan RO; Singewald N; Pape HC; Flath CM; Blum R
    Elife; 2020 Oct; 9():. PubMed ID: 33074102
    [TBL] [Abstract][Full Text] [Related]  

  • 8. MABAL: a Novel Deep-Learning Architecture for Machine-Assisted Bone Age Labeling.
    Mutasa S; Chang PD; Ruzal-Shapiro C; Ayyala R
    J Digit Imaging; 2018 Aug; 31(4):513-519. PubMed ID: 29404850
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deep-learning-based AI for evaluating estimated nonperfusion areas requiring further examination in ultra-widefield fundus images.
    Inoda S; Takahashi H; Yamagata H; Hisadome Y; Kondo Y; Tampo H; Sakamoto S; Katada Y; Kurihara T; Kawashima H; Yanagi Y
    Sci Rep; 2022 Dec; 12(1):21826. PubMed ID: 36528737
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deep Learning Detection of Sea Fan Neovascularization From Ultra-Widefield Color Fundus Photographs of Patients With Sickle Cell Hemoglobinopathy.
    Cai S; Parker F; Urias MG; Goldberg MF; Hager GD; Scott AW
    JAMA Ophthalmol; 2021 Feb; 139(2):206-213. PubMed ID: 33377944
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Automatic detection of microaneurysms in optical coherence tomography images of retina using convolutional neural networks and transfer learning.
    Almasi R; Vafaei A; Kazeminasab E; Rabbani H
    Sci Rep; 2022 Aug; 12(1):13975. PubMed ID: 35978087
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cross-modality Labeling Enables Noninvasive Capillary Quantification as a Sensitive Biomarker for Assessing Cardiovascular Risk.
    Shi D; Zhou Y; He S; Wagner SK; Huang Y; Keane PA; Ting DSW; Zhang L; Zheng Y; He M
    Ophthalmol Sci; 2024; 4(3):100441. PubMed ID: 38420613
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multi-path cascaded U-net for vessel segmentation from fundus fluorescein angiography sequential images.
    Sun G; Liu X; Yu X
    Comput Methods Programs Biomed; 2021 Nov; 211():106422. PubMed ID: 34598080
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quality assessment of colour fundus and fluorescein angiography images using deep learning.
    König M; Seeböck P; Gerendas BS; Mylonas G; Winklhofer R; Dimakopoulou I; Schmidt-Erfurth UM
    Br J Ophthalmol; 2023 Dec; 108(1):98-104. PubMed ID: 36418144
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deep multi-instance heatmap regression for the detection of retinal vessel crossings and bifurcations in eye fundus images.
    Hervella ÁS; Rouco J; Novo J; Penedo MG; Ortega M
    Comput Methods Programs Biomed; 2020 Apr; 186():105201. PubMed ID: 31783244
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Two-stage framework for optic disc localization and glaucoma classification in retinal fundus images using deep learning.
    Bajwa MN; Malik MI; Siddiqui SA; Dengel A; Shafait F; Neumeier W; Ahmed S
    BMC Med Inform Decis Mak; 2019 Jul; 19(1):136. PubMed ID: 31315618
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deep learning can generate traditional retinal fundus photographs using ultra-widefield images via generative adversarial networks.
    Yoo TK; Ryu IH; Kim JK; Lee IS; Kim JS; Kim HK; Choi JY
    Comput Methods Programs Biomed; 2020 Dec; 197():105761. PubMed ID: 32961385
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A novel retinal vessel detection approach based on multiple deep convolution neural networks.
    Guo Y; Budak Ü; Şengür A
    Comput Methods Programs Biomed; 2018 Dec; 167():43-48. PubMed ID: 30501859
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Real-Time Cerebral Vessel Segmentation in Laser Speckle Contrast Image Based on Unsupervised Domain Adaptation.
    Chen H; Shi Y; Bo B; Zhao D; Miao P; Tong S; Wang C
    Front Neurosci; 2021; 15():755198. PubMed ID: 34916898
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bridging the resources gap: deep learning for fluorescein angiography and optical coherence tomography macular thickness map image translation.
    Abdelmotaal H; Sharaf M; Soliman W; Wasfi E; Kedwany SM
    BMC Ophthalmol; 2022 Sep; 22(1):355. PubMed ID: 36050661
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.