These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 32396087)

  • 41. Multi-Label Classification Scheme Based on Local Regression for Retinal Vessel Segmentation.
    Zou B; Dai Y; He Q; Zhu C; Liu G; Su Y; Tang R
    IEEE/ACM Trans Comput Biol Bioinform; 2021; 18(6):2586-2597. PubMed ID: 32175869
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Retinal vascular junction detection and classification via deep neural networks.
    Zhao H; Sun Y; Li H
    Comput Methods Programs Biomed; 2020 Jan; 183():105096. PubMed ID: 31586789
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Deep morphology aided diagnosis network for segmentation of carotid artery vessel wall and diagnosis of carotid atherosclerosis on black-blood vessel wall MRI.
    Wu J; Xin J; Yang X; Sun J; Xu D; Zheng N; Yuan C
    Med Phys; 2019 Dec; 46(12):5544-5561. PubMed ID: 31356693
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A new robust method for blood vessel segmentation in retinal fundus images based on weighted line detector and hidden Markov model.
    Zhou C; Zhang X; Chen H
    Comput Methods Programs Biomed; 2020 Apr; 187():105231. PubMed ID: 31786454
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Explainable artificial intelligence for the automated assessment of the retinal vascular tortuosity.
    Hervella ÁS; Ramos L; Rouco J; Novo J; Ortega M
    Med Biol Eng Comput; 2024 Mar; 62(3):865-881. PubMed ID: 38060101
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A novel microaneurysms detection approach based on convolutional neural networks with reinforcement sample learning algorithm.
    Budak U; Şengür A; Guo Y; Akbulut Y
    Health Inf Sci Syst; 2017 Dec; 5(1):14. PubMed ID: 29147563
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Translation of Color Fundus Photography into Fluorescein Angiography Using Deep Learning for Enhanced Diabetic Retinopathy Screening.
    Shi D; Zhang W; He S; Chen Y; Song F; Liu S; Wang R; Zheng Y; He M
    Ophthalmol Sci; 2023 Dec; 3(4):100401. PubMed ID: 38025160
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Estimation of Visual Function Using Deep Learning From Ultra-Widefield Fundus Images of Eyes With Retinitis Pigmentosa.
    Nagasato D; Sogawa T; Tanabe M; Tabuchi H; Numa S; Oishi A; Ohashi Ikeda H; Tsujikawa A; Maeda T; Takahashi M; Ito N; Miura G; Shinohara T; Egawa M; Mitamura Y
    JAMA Ophthalmol; 2023 Apr; 141(4):305-313. PubMed ID: 36821134
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Self-relabeling for noise-tolerant retina vessel segmentation through label reliability estimation.
    Li J; Li R; Han R; Wang S
    BMC Med Imaging; 2022 Jan; 22(1):8. PubMed ID: 35022020
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Automated Detection of Vascular Leakage in Fluorescein Angiography - A Proof of Concept.
    Young LH; Kim J; Yakin M; Lin H; Dao DT; Kodati S; Sharma S; Lee AY; Lee CS; Sen HN
    Transl Vis Sci Technol; 2022 Jul; 11(7):19. PubMed ID: 35877095
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Generalization of deep learning models for ultra-low-count amyloid PET/MRI using transfer learning.
    Chen KT; Schürer M; Ouyang J; Koran MEI; Davidzon G; Mormino E; Tiepolt S; Hoffmann KT; Sabri O; Zaharchuk G; Barthel H
    Eur J Nucl Med Mol Imaging; 2020 Dec; 47(13):2998-3007. PubMed ID: 32535655
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Automated detection of retinal exudates and drusen in ultra-widefield fundus images based on deep learning.
    Li Z; Guo C; Nie D; Lin D; Cui T; Zhu Y; Chen C; Zhao L; Zhang X; Dongye M; Wang D; Xu F; Jin C; Zhang P; Han Y; Yan P; Lin H
    Eye (Lond); 2022 Aug; 36(8):1681-1686. PubMed ID: 34345030
    [TBL] [Abstract][Full Text] [Related]  

  • 53. ANALYSIS OF VASCULAR CHANGES OF FUNDUS IN BEHCET UVEITIS BY WIDEFIELD SWEPT SOURCE OPTICAL COHERENCE TOMOGRAPHY ANGIOGRAPHY AND FUNDUS FLUORESCEIN ANGIOGRAPHY.
    Guo S; Liu H; Gao Y; Dai L; Xu J; Yang P
    Retina; 2023 May; 43(5):841-850. PubMed ID: 36729551
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Comparison of widefield swept-source optical coherence tomography angiography with ultra-widefield fluorescein angiography for the evaluation of lesions in retinal vein occlusion.
    Siying L; Qiaozhu Z; Xinyao H; Linqi Z; Mingwei Z; Jinfeng Q
    BMC Ophthalmol; 2022 Nov; 22(1):422. PubMed ID: 36344951
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Segmentation of blood vessels from red-free and fluorescein retinal images.
    Martinez-Perez ME; Hughes AD; Thom SA; Bharath AA; Parker KH
    Med Image Anal; 2007 Feb; 11(1):47-61. PubMed ID: 17204445
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Hard Attention Net for Automatic Retinal Vessel Segmentation.
    Wang D; Haytham A; Pottenburgh J; Saeedi O; Tao Y
    IEEE J Biomed Health Inform; 2020 Dec; 24(12):3384-3396. PubMed ID: 32750941
    [TBL] [Abstract][Full Text] [Related]  

  • 57. End-to-end diabetic retinopathy grading based on fundus fluorescein angiography images using deep learning.
    Gao Z; Jin K; Yan Y; Liu X; Shi Y; Ge Y; Pan X; Lu Y; Wu J; Wang Y; Ye J
    Graefes Arch Clin Exp Ophthalmol; 2022 May; 260(5):1663-1673. PubMed ID: 35066704
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Improving sensitivity and connectivity of retinal vessel segmentation via error discrimination network.
    Lin G; Bai H; Zhao J; Yun Z; Chen Y; Pang S; Feng Q
    Med Phys; 2022 Jul; 49(7):4494-4507. PubMed ID: 35338781
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Accurate measurement of magnetic resonance parkinsonism index by a fully automatic and deep learning quantification pipeline.
    Sun F; Lyu J; Jian S; Qin Y; Tang X
    Eur Radiol; 2023 Dec; 33(12):8844-8853. PubMed ID: 37480547
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Detection of Diabetic Retinopathy from Ultra-Widefield Scanning Laser Ophthalmoscope Images: A Multicenter Deep Learning Analysis.
    Tang F; Luenam P; Ran AR; Quadeer AA; Raman R; Sen P; Khan R; Giridhar A; Haridas S; Iglicki M; Zur D; Loewenstein A; Negri HP; Szeto S; Lam BKY; Tham CC; Sivaprasad S; Mckay M; Cheung CY
    Ophthalmol Retina; 2021 Nov; 5(11):1097-1106. PubMed ID: 33540169
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.