These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 32396093)

  • 1. Spatiotemporal Maps of Proprioceptive Inputs to the Cervical Spinal Cord During Three-Dimensional Reaching and Grasping.
    Kibleur P; Tata SR; Greiner N; Conti S; Barra B; Zhuang K; Kaeser M; Ijspeert A; Capogrosso M
    IEEE Trans Neural Syst Rehabil Eng; 2020 Jul; 28(7):1668-1677. PubMed ID: 32396093
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Roles of primate spinal interneurons in preparation and execution of voluntary hand movement.
    Fetz EE; Perlmutter SI; Prut Y; Seki K; Votaw S
    Brain Res Brain Res Rev; 2002 Oct; 40(1-3):53-65. PubMed ID: 12589906
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Selective Recruitment of Arm Motoneurons in Nonhuman Primates Using Epidural Electrical Stimulation of the Cervical Spinal Cord.
    Barra B; Roux C; Kaeser M; Schiavone G; Lacour SP; Bloch J; Courtine G; Rouiller EM; Schmidlin E; Capogrosso M
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():1424-1427. PubMed ID: 30440659
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Proprioceptive activity in primate primary somatosensory cortex during active arm reaching movements.
    Prud'homme MJ; Kalaska JF
    J Neurophysiol; 1994 Nov; 72(5):2280-301. PubMed ID: 7884459
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nerve-Specific Input Modulation to Spinal Neurons during a Motor Task in the Monkey.
    Confais J; Kim G; Tomatsu S; Takei T; Seki K
    J Neurosci; 2017 Mar; 37(10):2612-2626. PubMed ID: 28159911
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phase-dependent deficits during reach-to-grasp after human spinal cord injury.
    Lei Y; Perez MA
    J Neurophysiol; 2018 Jan; 119(1):251-261. PubMed ID: 28931614
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Preferential activation of proprioceptive and cutaneous sensory fibers compared to motor fibers during cervical transcutaneous spinal cord stimulation: a computational study.
    de Freitas RM; Capogrosso M; Nomura T; Milosevic M
    J Neural Eng; 2022 May; 19(3):. PubMed ID: 35472720
    [No Abstract]   [Full Text] [Related]  

  • 8. Extrasynaptic α
    Lucas-Osma AM; Li Y; Lin S; Black S; Singla R; Fouad K; Fenrich KK; Bennett DJ
    J Neurophysiol; 2018 Dec; 120(6):2953-2974. PubMed ID: 30256739
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sensorimotor integration of vision and proprioception for obstacle crossing in ambulatory individuals with spinal cord injury.
    Malik RN; Cote R; Lam T
    J Neurophysiol; 2017 Jan; 117(1):36-46. PubMed ID: 27733593
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neural basis for hand muscle synergies in the primate spinal cord.
    Takei T; Confais J; Tomatsu S; Oya T; Seki K
    Proc Natl Acad Sci U S A; 2017 Aug; 114(32):8643-8648. PubMed ID: 28739958
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Epidural electrical stimulation of the cervical dorsal roots restores voluntary upper limb control in paralyzed monkeys.
    Barra B; Conti S; Perich MG; Zhuang K; Schiavone G; Fallegger F; Galan K; James ND; Barraud Q; Delacombaz M; Kaeser M; Rouiller EM; Milekovic T; Lacour S; Bloch J; Courtine G; Capogrosso M
    Nat Neurosci; 2022 Jul; 25(7):924-934. PubMed ID: 35773543
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stimulus outputs induced by subdural electrodes on the cervical spinal cord in monkeys.
    Kato K; Nishihara Y; Nishimura Y
    J Neural Eng; 2020 Feb; 17(1):016044. PubMed ID: 32023224
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Co-development of proprioceptive afferents and the corticospinal tract within the cervical spinal cord.
    Chakrabarty S; Martin JH
    Eur J Neurosci; 2011 Sep; 34(5):682-94. PubMed ID: 21896059
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Opposed optimal strategies of weighting somatosensory inputs for planning reaching movements toward visual and proprioceptive targets.
    Blouin J; Saradjian AH; Lebar N; Guillaume A; Mouchnino L
    J Neurophysiol; 2014 Nov; 112(9):2290-301. PubMed ID: 25122716
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular mechanisms underlying monosynaptic sensory-motor circuit development in the spinal cord.
    Imai F; Yoshida Y
    Dev Dyn; 2018 Apr; 247(4):581-587. PubMed ID: 29226492
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Proprioception during voluntary movement.
    Prochazka A
    Can J Physiol Pharmacol; 1986 Apr; 64(4):499-504. PubMed ID: 3730934
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modulation of spinal motor output by initial arm postures in anesthetized monkeys.
    Yaguchi H; Takei T; Kowalski D; Suzuki T; Mabuchi K; Seki K
    J Neurosci; 2015 Apr; 35(17):6937-45. PubMed ID: 25926468
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recruitment of spinal motor pools during voluntary movements versus stepping after human spinal cord injury.
    Maegele M; Müller S; Wernig A; Edgerton VR; Harkema SJ
    J Neurotrauma; 2002 Oct; 19(10):1217-29. PubMed ID: 12427330
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The interaction of visual and proprioceptive inputs in pointing to actual and remembered targets in Parkinson's disease.
    Adamovich SV; Berkinblit MB; Hening W; Sage J; Poizner H
    Neuroscience; 2001; 104(4):1027-41. PubMed ID: 11457588
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Predicting any arm movement feedback to induce three-dimensional illusory movements in humans.
    Thyrion C; Roll JP
    J Neurophysiol; 2010 Aug; 104(2):949-59. PubMed ID: 20538782
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.