These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
169 related articles for article (PubMed ID: 32396094)
21. Real-Time EMG Based Pattern Recognition Control for Hand Prostheses: A Review on Existing Methods, Challenges and Future Implementation. Parajuli N; Sreenivasan N; Bifulco P; Cesarelli M; Savino S; Niola V; Esposito D; Hamilton TJ; Naik GR; Gunawardana U; Gargiulo GD Sensors (Basel); 2019 Oct; 19(20):. PubMed ID: 31652616 [TBL] [Abstract][Full Text] [Related]
22. Closed-Loop Multi-Amplitude Control for Robust and Dexterous Performance of Myoelectric Prosthesis. Markovic M; Varel M; Schweisfurth MA; Schilling AF; Dosen S IEEE Trans Neural Syst Rehabil Eng; 2020 Feb; 28(2):498-507. PubMed ID: 31841418 [TBL] [Abstract][Full Text] [Related]
23. Application of real-time machine learning to myoelectric prosthesis control: A case series in adaptive switching. Edwards AL; Dawson MR; Hebert JS; Sherstan C; Sutton RS; Chan KM; Pilarski PM Prosthet Orthot Int; 2016 Oct; 40(5):573-81. PubMed ID: 26423106 [TBL] [Abstract][Full Text] [Related]
24. Conditioning and sampling issues of EMG signals in motion recognition of multifunctional myoelectric prostheses. Li G; Li Y; Yu L; Geng Y Ann Biomed Eng; 2011 Jun; 39(6):1779-87. PubMed ID: 21293972 [TBL] [Abstract][Full Text] [Related]
25. Real-time simultaneous myoelectric control by transradial amputees using linear and probability-weighted regression. Smith LH; Kuiken TA; Hargrove LJ Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():1119-23. PubMed ID: 26736462 [TBL] [Abstract][Full Text] [Related]
26. A Prosthetic Hand Body Area Controller Based on Efficient Pattern Recognition Control Strategies. Benatti S; Milosevic B; Farella E; Gruppioni E; Benini L Sensors (Basel); 2017 Apr; 17(4):. PubMed ID: 28420135 [TBL] [Abstract][Full Text] [Related]
27. Analysis of using EMG and mechanical sensors to enhance intent recognition in powered lower limb prostheses. Young AJ; Kuiken TA; Hargrove LJ J Neural Eng; 2014 Oct; 11(5):056021. PubMed ID: 25242111 [TBL] [Abstract][Full Text] [Related]
28. An exploration of grip force regulation with a low-impedance myoelectric prosthesis featuring referred haptic feedback. Brown JD; Paek A; Syed M; O'Malley MK; Shewokis PA; Contreras-Vidal JL; Davis AJ; Gillespie RB J Neuroeng Rehabil; 2015 Nov; 12():104. PubMed ID: 26602538 [TBL] [Abstract][Full Text] [Related]
29. A real-time comparison between direct control, sequential pattern recognition control and simultaneous pattern recognition control using a Fitts' law style assessment procedure. Wurth SM; Hargrove LJ J Neuroeng Rehabil; 2014 May; 11():91. PubMed ID: 24886664 [TBL] [Abstract][Full Text] [Related]
30. Resolving the adverse impact of mobility on myoelectric pattern recognition in upper-limb multifunctional prostheses. Samuel OW; Li X; Geng Y; Asogbon MG; Fang P; Huang Z; Li G Comput Biol Med; 2017 Nov; 90():76-87. PubMed ID: 28961473 [TBL] [Abstract][Full Text] [Related]
31. Voluntary phantom hand and finger movements in transhumerai amputees could be used to naturally control polydigital prostheses. Jarrasse N; Nicol C; Richer F; Touillet A; Martinet N; Paysant J; De Graaf JB IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1239-1245. PubMed ID: 28813991 [TBL] [Abstract][Full Text] [Related]
32. Two ways to improve myoelectric control for a transhumeral amputee after targeted muscle reinnervation: a case study. Xu Y; Zhang D; Wang Y; Feng J; Xu W J Neuroeng Rehabil; 2018 May; 15(1):37. PubMed ID: 29747672 [TBL] [Abstract][Full Text] [Related]
33. Interactions Between Transfemoral Amputees and a Powered Knee Prosthesis During Load Carriage. Brandt A; Wen Y; Liu M; Stallings J; Huang HH Sci Rep; 2017 Nov; 7(1):14480. PubMed ID: 29101394 [TBL] [Abstract][Full Text] [Related]
34. Biosignal-based transferable attention Bi-ConvGRU deep network for hand-gesture recognition towards online upper-limb prosthesis control. Xie B; Meng J; Li B; Harland A Comput Methods Programs Biomed; 2022 Sep; 224():106999. PubMed ID: 35841852 [TBL] [Abstract][Full Text] [Related]
35. Voluntary Control of Residual Antagonistic Muscles in Transtibial Amputees: Reciprocal Activation, Coactivation, and Implications for Direct Neural Control of Powered Lower Limb Prostheses. Huang S; Huang H IEEE Trans Neural Syst Rehabil Eng; 2019 Jan; 27(1):85-95. PubMed ID: 30530332 [TBL] [Abstract][Full Text] [Related]
36. Functional Assessment of a Myoelectric Postural Controller and Multi-Functional Prosthetic Hand by Persons With Trans-Radial Limb Loss. Segil JL; Huddle SA; Weir RFF IEEE Trans Neural Syst Rehabil Eng; 2017 Jun; 25(6):618-627. PubMed ID: 27390181 [TBL] [Abstract][Full Text] [Related]
37. Towards better understanding and reducing the effect of limb position on myoelectric upper-limb prostheses. Masters MR; Smith RJ; Soares AB; Thakor NV Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():2577-80. PubMed ID: 25570517 [TBL] [Abstract][Full Text] [Related]
38. Improving the Robustness of Myoelectric Pattern Recognition for Upper Limb Prostheses by Covariate Shift Adaptation. Vidovic MM; Hwang HJ; Amsuss S; Hahne JM; Farina D; Muller KR IEEE Trans Neural Syst Rehabil Eng; 2016 Sep; 24(9):961-970. PubMed ID: 26513794 [TBL] [Abstract][Full Text] [Related]
39. Protocol for site selection and movement assessment for the myoelectric control of a multi-functional upper-limb prosthesis. Al-Timemy AH; Escudero J; Bugmann G; Outram N Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():5817-20. PubMed ID: 24111061 [TBL] [Abstract][Full Text] [Related]
40. Position Identification for Robust Myoelectric Control Against Electrode Shift. He J; Sheng X; Zhu X; Jiang N IEEE Trans Neural Syst Rehabil Eng; 2020 Dec; 28(12):3121-3128. PubMed ID: 33196444 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]