BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 32396326)

  • 1. Size- and Temperature-Dependent Intraband Optical Properties of Heavily n-Doped PbS Colloidal Quantum Dot Solid-State Films.
    Ramiro I; Kundu B; Dalmases M; Özdemir O; Pedrosa M; Konstantatos G
    ACS Nano; 2020 Jun; 14(6):7161-7169. PubMed ID: 32396326
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mid- and Long-Wave Infrared Optoelectronics via Intraband Transitions in PbS Colloidal Quantum Dots.
    Ramiro I; Özdemir O; Christodoulou S; Gupta S; Dalmases M; Torre I; Konstantatos G
    Nano Lett; 2020 Feb; 20(2):1003-1008. PubMed ID: 31934762
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intraband Transition of HgTe Nanocrystals for Long-Wave Infrared Detection at 12 μm.
    Zhang H; Peterson JC; Guyot-Sionnest P
    ACS Nano; 2023 Apr; 17(8):7530-7538. PubMed ID: 37027314
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intraband Transitions of Nanocrystals Transforming from Lead Selenide to Self-doped Silver Selenide Quantum Dots by Cation Exchange.
    Bera R; Choi D; Jung YS; Song H; Jeong KS
    J Phys Chem Lett; 2022 Jul; 13(26):6138-6146. PubMed ID: 35759614
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Colloidal quantum dots intraband photodetectors.
    Deng Z; Jeong KS; Guyot-Sionnest P
    ACS Nano; 2014 Nov; 8(11):11707-14. PubMed ID: 25343383
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Energy spectra and optical transitions in germanene quantum dots.
    Herath TM; Apalkov V
    J Phys Condens Matter; 2016 Apr; 28(16):165301. PubMed ID: 27008912
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Vertically Stacked Intraband Quantum Dot Devices for Mid-Wavelength Infrared Photodetection.
    Hafiz SB; Al Mahfuz MM; Ko DK
    ACS Appl Mater Interfaces; 2021 Jan; 13(1):937-943. PubMed ID: 33372770
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Self-doped colloidal semiconductor nanocrystals with intraband transitions in steady state.
    Kim J; Choi D; Jeong KS
    Chem Commun (Camb); 2018 Jul; 54(61):8435-8445. PubMed ID: 29972153
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Historical Development of Infrared Photodetection Based on Intraband Transitions.
    Hao Q; Zhao X; Tang X; Chen M
    Materials (Basel); 2023 Feb; 16(4):. PubMed ID: 36837192
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Midwavelength Infrared p-n Heterojunction Diodes Based on Intraband Colloidal Quantum Dots.
    Hafiz SB; Al Mahfuz MM; Lee S; Ko DK
    ACS Appl Mater Interfaces; 2021 Oct; 13(41):49043-49049. PubMed ID: 34613686
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intraband Luminescence from HgSe/CdS Core/Shell Quantum Dots.
    Deng Z; Guyot-Sionnest P
    ACS Nano; 2016 Feb; 10(2):2121-7. PubMed ID: 26820380
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Air-Stable n-Doped Colloidal HgS Quantum Dots.
    Jeong KS; Deng Z; Keuleyan S; Liu H; Guyot-Sionnest P
    J Phys Chem Lett; 2014 Apr; 5(7):1139-43. PubMed ID: 26274461
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dedoping of Intraband Silver Selenide Colloidal Quantum Dots through Strong Electronic Coupling at Organic/Inorganic Hybrid Interfaces.
    Mo Lnås H; Paul SJ; Scimeca MR; Mattu N; Zuo J; Parashar N; Li L; Riedo E; Sahu A
    Cryst Growth Des; 2024 Apr; 24(7):2821-2832. PubMed ID: 38585377
    [TBL] [Abstract][Full Text] [Related]  

  • 14. HgSe Self-Doped Nanocrystals as a Platform to Investigate the Effects of Vanishing Confinement.
    Martinez B; Livache C; Notemgnou Mouafo LD; Goubet N; Keuleyan S; Cruguel H; Ithurria S; Aubin H; Ouerghi A; Doudin B; Lacaze E; Dubertret B; Silly MG; Lobo RPSM; Dayen JF; Lhuillier E
    ACS Appl Mater Interfaces; 2017 Oct; 9(41):36173-36180. PubMed ID: 28956432
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fast and Sensitive Colloidal Quantum Dot Mid-Wave Infrared Photodetectors.
    Ackerman MM; Tang X; Guyot-Sionnest P
    ACS Nano; 2018 Jul; 12(7):7264-7271. PubMed ID: 29975502
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Single-Exciton Gain and Stimulated Emission Across the Infrared Telecom Band from Robust Heavily Doped PbS Colloidal Quantum Dots.
    Christodoulou S; Ramiro I; Othonos A; Figueroba A; Dalmases M; Özdemir O; Pradhan S; Itskos G; Konstantatos G
    Nano Lett; 2020 Aug; 20(8):5909-5915. PubMed ID: 32662655
    [TBL] [Abstract][Full Text] [Related]  

  • 17. All-Optical Wavelength Conversion by Picosecond Burst Absorption in Colloidal PbS Quantum Dots.
    Geiregat P; Houtepen AJ; Van Thourhout D; Hens Z
    ACS Nano; 2016 Jan; 10(1):1265-72. PubMed ID: 26692112
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Wave-Function Engineering in HgSe/HgTe Colloidal Heterostructures To Enhance Mid-infrared Photoconductive Properties.
    Goubet N; Livache C; Martinez B; Xu XZ; Ithurria S; Royer S; Cruguel H; Patriarche G; Ouerghi A; Silly M; Dubertret B; Lhuillier E
    Nano Lett; 2018 Jul; 18(7):4590-4597. PubMed ID: 29812951
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optical properties of HgTe colloidal quantum dots.
    Lhuillier E; Keuleyan S; Guyot-Sionnest P
    Nanotechnology; 2012 May; 23(17):175705. PubMed ID: 22481378
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Highly efficient multiple exciton generation in colloidal PbSe and PbS quantum dots.
    Ellingson RJ; Beard MC; Johnson JC; Yu P; Micic OI; Nozik AJ; Shabaev A; Efros AL
    Nano Lett; 2005 May; 5(5):865-71. PubMed ID: 15884885
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.