These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 32396326)

  • 41. A quantum dot in topological insulator nanofilm.
    Herath TM; Hewageegana P; Apalkov V
    J Phys Condens Matter; 2014 Mar; 26(11):115302. PubMed ID: 24590177
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Infrared Colloidal Quantum Dot Photovoltaics via Coupling Enhancement and Agglomeration Suppression.
    Ip AH; Kiani A; Kramer IJ; Voznyy O; Movahed HF; Levina L; Adachi MM; Hoogland S; Sargent EH
    ACS Nano; 2015 Sep; 9(9):8833-42. PubMed ID: 26266671
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Light-controllable fiber interferometer utilizing photoexcitation dynamics in colloidal quantum dot.
    Gao F; Wang Y; Xu L; Feng Z; Wu Q; Zhang B; Liu J; Tang J; Tang M; Liu H; Fu S; Ruan Y; Ebendorff-Heidepriem H; Liu D
    Opt Express; 2018 Feb; 26(4):3903-3914. PubMed ID: 29475247
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Revisiting the Valence and Conduction Band Size Dependence of PbS Quantum Dot Thin Films.
    Miller EM; Kroupa DM; Zhang J; Schulz P; Marshall AR; Kahn A; Lany S; Luther JM; Beard MC; Perkins CL; van de Lagemaat J
    ACS Nano; 2016 Mar; 10(3):3302-11. PubMed ID: 26895310
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Beyond the Bandgap Photoluminescence of Colloidal Semiconductor Nanocrystals.
    Bera R; Kim G; Choi D; Kim J; Jeong KS
    J Phys Chem Lett; 2021 Mar; 12(10):2562-2569. PubMed ID: 33684285
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Ultrafast charge separation and recombination dynamics in lead sulfide quantum dot-methylene blue complexes probed by electron and hole intraband transitions.
    Yang Y; Rodríguez-Córdoba W; Lian T
    J Am Chem Soc; 2011 Jun; 133(24):9246-9. PubMed ID: 21615168
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Electron-Transport Layers Employing Strongly Bound Ligands Enhance Stability in Colloidal Quantum Dot Infrared Photodetectors.
    Zhang Y; Vafaie M; Xu J; Pina JM; Xia P; Najarian AM; Atan O; Imran M; Xie K; Hoogland S; Sargent EH
    Adv Mater; 2022 Nov; 34(47):e2206884. PubMed ID: 36134538
    [TBL] [Abstract][Full Text] [Related]  

  • 48. PbS Colloidal Quantum Dot Inks for Infrared Solar Cells.
    Zheng S; Chen J; Johansson EMJ; Zhang X
    iScience; 2020 Nov; 23(11):101753. PubMed ID: 33241199
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Long-Wavelength Lead Sulfide Quantum Dots Sensing up to 2600 nm for Short-Wavelength Infrared Photodetectors.
    Dong C; Liu S; Barange N; Lee J; Pardue T; Yi X; Yin S; So F
    ACS Appl Mater Interfaces; 2019 Nov; 11(47):44451-44457. PubMed ID: 31689078
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Broadband and picosecond intraband absorption in lead-based colloidal quantum dots.
    De Geyter B; Houtepen AJ; Carrillo S; Geiregat P; Gao Y; ten Cate S; Schins JM; Van Thourhout D; Delerue C; Siebbeles LD; Hens Z
    ACS Nano; 2012 Jul; 6(7):6067-74. PubMed ID: 22686663
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Stable Colloidal Quantum Dot Inks Enable Inkjet-Printed High-Sensitivity Infrared Photodetectors.
    Sliz R; Lejay M; Fan JZ; Choi MJ; Kinge S; Hoogland S; Fabritius T; García de Arquer FP; Sargent EH
    ACS Nano; 2019 Oct; 13(10):11988-11995. PubMed ID: 31545597
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Intraband spectroscopy and band offsets of colloidal II-VI core/shell structures.
    Pandey A; Guyot-Sionnest P
    J Chem Phys; 2007 Sep; 127(10):104710. PubMed ID: 17867772
    [TBL] [Abstract][Full Text] [Related]  

  • 53. PbS/Cd₃P₂ quantum heterojunction colloidal quantum dot solar cells.
    Cao H; Liu Z; Zhu X; Peng J; Hu L; Xu S; Luo M; Ma W; Tang J; Liu H
    Nanotechnology; 2015 Jan; 26(3):035401. PubMed ID: 25548866
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Infrared photodetector sensitized by InAs quantum dots embedded near an Al
    Murata T; Asahi S; Sanguinetti S; Kita T
    Sci Rep; 2020 Jul; 10(1):11628. PubMed ID: 32669650
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Effects of an External Magnetic Field on the Interband and Intraband Optical Properties of an Asymmetric Biconvex Lens-Shaped Quantum Dot.
    Mkrtchyan MA; Hayrapetyan DB; Kazaryan EM; Sarkisyan HA; Vinnichenko MY; Shalygin VA; Firsov DA; Petrosyan LS
    Nanomaterials (Basel); 2021 Dec; 12(1):. PubMed ID: 35010010
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Size-dependent two-photon absorption in circular graphene quantum dots.
    Feng X; Li X; Li Z; Liu Y
    Opt Express; 2016 Feb; 24(3):2877-84. PubMed ID: 26906856
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Intersubband Relaxation in CdSe Colloidal Quantum Wells.
    Diroll BT; Schaller RD
    ACS Nano; 2020 Sep; 14(9):12082-12090. PubMed ID: 32864955
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Carrier relaxation dynamics in lead sulfide colloidal quantum dots.
    Istrate E; Hoogland S; Sukhovatkin V; Levina L; Myrskog S; Smith PW; Sargent EH
    J Phys Chem B; 2008 Mar; 112(10):2757-60. PubMed ID: 18275180
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Guided-mode resonance gratings for enhanced mid-infrared absorption in quantum dot intermediate-band solar cells.
    Elsehrawy F; Niemi T; Cappelluti F
    Opt Express; 2018 Mar; 26(6):A352-A359. PubMed ID: 29609305
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Confinement Effects and Charge Dynamics in Zn
    Ahumada-Lazo R; Fairclough SM; Hardman SJO; Taylor PN; Green M; Haigh SJ; Saran R; Curry RJ; Binks DJ
    ACS Appl Nano Mater; 2019 Nov; 2(11):7214-7219. PubMed ID: 32118200
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.