These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 32396392)

  • 1. Effect of gap outside contact area on lubrication of metal-on-Metal total hip replacement.
    Al-Saffar AA; Evans SL
    Comput Methods Biomech Biomed Engin; 2020 Aug; 23(11):675-689. PubMed ID: 32396392
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of elastohydrodynamic lubrication in McKee-Farrar metal-on-metal hip joint replacement.
    Yew A; Udofia I; Jagatia M; Jin ZM
    Proc Inst Mech Eng H; 2004; 218(1):27-34. PubMed ID: 14982343
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Importance of head diameter, clearance, and cup wall thickness in elastohydrodynamic lubrication analysis of metal-on-metal hip resurfacing prostheses.
    Liu F; Jin Z; Roberts P; Grigoris P
    Proc Inst Mech Eng H; 2006 Aug; 220(6):695-704. PubMed ID: 16961189
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of 3D physiological loading and motion on elastohydrodynamic lubrication of metal-on-metal total hip replacements.
    Gao L; Wang F; Yang P; Jin Z
    Med Eng Phys; 2009 Jul; 31(6):720-9. PubMed ID: 19269879
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Steady-state elastohydrodynamic lubrication analysis of a metal-on-metal hip implant employing a metallic cup with an ultra-high molecular weight polyethylene backing.
    Liu F; Wang FC; Jin ZM; Hirt F; Rieker C; Grigoris P
    Proc Inst Mech Eng H; 2004; 218(4):261-70. PubMed ID: 15376728
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Elastohydrodynamic lubrication analysis of metal-on-metal hip-resurfacing prostheses.
    Udofia IJ; Jin ZM
    J Biomech; 2003 Apr; 36(4):537-44. PubMed ID: 12600344
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transient elastohydrodynamic lubrication analysis of metal-on-metal hip implant under simulated walking conditions.
    Liu F; Jin ZM; Hirt F; Rieker C; Roberts P; Grigoris P
    J Biomech; 2006; 39(5):905-14. PubMed ID: 16199048
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of elastohydrodynamic lubrication in a novel metal-on-metal hip joint replacement.
    Jagatia M; Jin ZM
    Proc Inst Mech Eng H; 2002; 216(3):185-93. PubMed ID: 12137285
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Elastohydrodynamic lubrication analysis of metal-on-metal hip prostheses under steady state entraining motion.
    Jagatia M; Jin ZM
    Proc Inst Mech Eng H; 2001; 215(6):531-41. PubMed ID: 11848385
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A general elastohydrodynamic lubrication analysis of artificial hip joints employing a compliant layered socket under steady state rotation.
    Wang FC; Liu F; Jin ZM
    Proc Inst Mech Eng H; 2004; 218(5):283-91. PubMed ID: 15532994
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis of contact mechanics in McKee-farrar metal-on-metal hip implants.
    Yew A; Jagatia M; Ensaff H; Jin ZM
    Proc Inst Mech Eng H; 2003; 217(5):333-40. PubMed ID: 14558645
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Poor Acetabular Component Orientation Increases Revision Risk in Metal-on-Metal Hip Arthroplasty.
    Tauriainen TJT; Niinimäki TT; Niinimäki JL; Nousiainen TOP; Leppilahti JI
    J Arthroplasty; 2017 Jul; 32(7):2204-2207. PubMed ID: 28291650
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Elastohydrodynamic lubrication analysis of ultra-high molecular weight polyethylene hip joint replacements under squeeze-film motion.
    Jagatia M; Jalali-Vahid D; Jin ZM
    Proc Inst Mech Eng H; 2001; 215(2):141-52. PubMed ID: 11382073
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Predictive wear modeling of the articulating metal-on-metal hip replacements.
    Gao L; Dowson D; Hewson RW
    J Biomed Mater Res B Appl Biomater; 2017 Apr; 105(3):497-506. PubMed ID: 26559657
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 3-D model of a total hip replacement in vivo providing hydrodynamic pressure and film thickness for walking and bicycling.
    Meyer DM; Tichy JA
    J Biomech Eng; 2003 Dec; 125(6):777-84. PubMed ID: 14986401
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of simplifications of bone and components inclination on the elastohydrodynamic lubrication modeling of metal-on-metal hip resurfacing prosthesis.
    Meng Q; Liu F; Fisher J; Jin Z
    Proc Inst Mech Eng H; 2013 May; 227(5):523-34. PubMed ID: 23637262
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Long-Term Outcomes After Metal-on-Metal Total Hip Arthroplasty With a 28-mm Head: A 17- to 23-Year Follow-Up Study of a Previous Report.
    Moon JK; Kim Y; Hwang KT; Yang JH; Oh YH; Kim YH
    J Arthroplasty; 2018 Jul; 33(7):2165-2172. PubMed ID: 29656971
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Contact patch to rim distance: the quintessential tool for metal-on-metal bearing in vivo performance analysis - a review.
    Le Duff MJ; Ebramzadeh E; Amstutz HC
    Hip Int; 2017 May; 27(3):220-225. PubMed ID: 28478641
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transient elastohydrodynamic lubrication analysis of a novel metal-on-metal hip prosthesis with a non-spherical femoral bearing surface.
    Meng QE; Liu F; Fisher J; Jin ZM
    Proc Inst Mech Eng H; 2011 Jan; 225(1):25-37. PubMed ID: 21381485
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Compliant layer acetabular cups: friction testing of a range of materials and designs for a new generation of prosthesis that mimics the natural joint.
    Scholes SC; Burgess IC; Marsden HR; Unsworth A; Jones E; Smith N
    Proc Inst Mech Eng H; 2006 Jul; 220(5):583-96. PubMed ID: 16898216
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.