These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

362 related articles for article (PubMed ID: 32396864)

  • 21. Integrative single-cell RNA-seq and ATAC-seq analysis of myogenic differentiation in pig.
    Cai S; Hu B; Wang X; Liu T; Lin Z; Tong X; Xu R; Chen M; Duo T; Zhu Q; Liang Z; Li E; Chen Y; Li J; Liu X; Mo D
    BMC Biol; 2023 Feb; 21(1):19. PubMed ID: 36726129
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Generation of Skeletal Muscle Organoids from Human Pluripotent Stem Cells.
    Kindler U; Zaehres H; Mavrommatis L
    Bio Protoc; 2024 May; 14(9):e4984. PubMed ID: 38737507
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Generation of human myogenic progenitors from pluripotent stem cells for in vivo regeneration.
    Kim H; Perlingeiro RCR
    Cell Mol Life Sci; 2022 Jul; 79(8):406. PubMed ID: 35802202
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Derivation of myogenic progenitors directly from human pluripotent stem cells using a sphere-based culture.
    Hosoyama T; McGivern JV; Van Dyke JM; Ebert AD; Suzuki M
    Stem Cells Transl Med; 2014 May; 3(5):564-74. PubMed ID: 24657962
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Myogenic Progenitors from Mouse Pluripotent Stem Cells for Muscle Regeneration.
    Magli A; Incitti T; Perlingeiro RC
    Methods Mol Biol; 2016; 1460():191-208. PubMed ID: 27492174
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Single-cell RNA-seq analysis of Mesp1-induced skeletal myogenic development.
    Penaloza JS; Pappas MP; Hagen HR; Xie N; Chan SSK
    Biochem Biophys Res Commun; 2019 Dec; 520(2):284-290. PubMed ID: 31590918
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Generation of craniofacial myogenic progenitor cells from human induced pluripotent stem cells for skeletal muscle tissue regeneration.
    Kim E; Wu F; Wu X; Choo HJ
    Biomaterials; 2020 Jul; 248():119995. PubMed ID: 32283390
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Generation of skeletal myogenic progenitors from human pluripotent stem cells using non-viral delivery of minicircle DNA.
    Kim J; Oliveira VKP; Yamamoto A; Perlingeiro RCR
    Stem Cell Res; 2017 Aug; 23():87-94. PubMed ID: 28732241
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Master regulators of skeletal muscle lineage development and pluripotent stem cells differentiation.
    Esteves de Lima J; Relaix F
    Cell Regen; 2021 Oct; 10(1):31. PubMed ID: 34595600
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Efficient Muscle Regeneration by Human PSC-Derived CD82
    Xie N; Chu SN; Schultz CB; Chan SSK
    Cells; 2023 Jan; 12(3):. PubMed ID: 36766703
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Pluripotent stem cell-derived skeletal muscle fibers preferentially express myosin heavy-chain isoforms associated with slow and oxidative muscles.
    Incitti T; Magli A; Jenkins A; Lin K; Yamamoto A; Perlingeiro RCR
    Skelet Muscle; 2020 Jun; 10(1):17. PubMed ID: 32493438
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Myogenic specification of side population cells in skeletal muscle.
    Asakura A; Seale P; Girgis-Gabardo A; Rudnicki MA
    J Cell Biol; 2002 Oct; 159(1):123-34. PubMed ID: 12379804
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Expression patterns of FSHD-causing DUX4 and myogenic transcription factors PAX3 and PAX7 are spatially distinct in differentiating human stem cell cultures.
    Haynes P; Kernan K; Zhou SL; Miller DG
    Skelet Muscle; 2017 Jun; 7(1):13. PubMed ID: 28637492
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Pax7 as molecular switch regulating early and advanced stages of myogenic mouse ESC differentiation in teratomas.
    Florkowska A; Meszka I; Zawada M; Legutko D; Proszynski TJ; Janczyk-Ilach K; Streminska W; Ciemerych MA; Grabowska I
    Stem Cell Res Ther; 2020 Jun; 11(1):238. PubMed ID: 32552916
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Human muscle production in vitro from pluripotent stem cells: Basic and clinical applications.
    Yan L; Rodríguez-delaRosa A; Pourquié O
    Semin Cell Dev Biol; 2021 Nov; 119():39-48. PubMed ID: 33941447
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Insights into skeletal muscle development and applications in regenerative medicine.
    Tran T; Andersen R; Sherman SP; Pyle AD
    Int Rev Cell Mol Biol; 2013; 300():51-83. PubMed ID: 23273859
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Isolation and culture of human muscle-derived stem cells able to differentiate into myogenic and neurogenic cell lineages.
    Alessandri G; Pagano S; Bez A; Benetti A; Pozzi S; Iannolo G; Baronio M; Invernici G; Caruso A; Muneretto C; Bisleri G; Parati E
    Lancet; 2004 Nov 20-26; 364(9448):1872-83. PubMed ID: 15555667
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Interleukin 4 Moderately Affects Competence of Pluripotent Stem Cells for Myogenic Conversion.
    Świerczek-Lasek B; Neska J; Kominek A; Tolak Ł; Czajkowski T; Jańczyk-Ilach K; Stremińska W; Piwocka K; Ciemerych MA; Archacka K
    Int J Mol Sci; 2019 Aug; 20(16):. PubMed ID: 31412558
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Induction of Skeletal Muscle Progenitors and Stem Cells from human induced Pluripotent Stem Cells.
    Sato T
    J Neuromuscul Dis; 2020; 7(4):395-405. PubMed ID: 32538862
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Premyogenic progenitors derived from human pluripotent stem cells expand in floating culture and differentiate into transplantable myogenic progenitors.
    Sakai-Takemura F; Narita A; Masuda S; Wakamatsu T; Watanabe N; Nishiyama T; Nogami K; Blanc M; Takeda S; Miyagoe-Suzuki Y
    Sci Rep; 2018 Apr; 8(1):6555. PubMed ID: 29700358
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.