BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 32396893)

  • 1. Established and Novel Mechanisms Leading to de novo Genomic Rearrangements in the Human Germline.
    Hattori A; Fukami M
    Cytogenet Genome Res; 2020; 160(4):167-176. PubMed ID: 32396893
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transient multifocal genomic crisis creating chromothriptic and non-chromothriptic rearrangements in prezygotic testicular germ cells.
    Hattori A; Okamura K; Terada Y; Tanaka R; Katoh-Fukui Y; Matsubara Y; Matsubara K; Kagami M; Horikawa R; Fukami M
    BMC Med Genomics; 2019 May; 12(1):77. PubMed ID: 31138192
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Catastrophic cellular events leading to complex chromosomal rearrangements in the germline.
    Fukami M; Shima H; Suzuki E; Ogata T; Matsubara K; Kamimaki T
    Clin Genet; 2017 May; 91(5):653-660. PubMed ID: 27888607
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genes, Proteins, and Biological Pathways Preventing Chromothripsis.
    Poot M
    Methods Mol Biol; 2018; 1769():231-251. PubMed ID: 29564828
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Potential Role of Chromothripsis in the Genesis of Complex Chromosomal Rearrangements in Human Gametes and Preimplantation Embryo.
    Pellestor F; Gatinois V
    Methods Mol Biol; 2018; 1769():35-41. PubMed ID: 29564816
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Complex X-Chromosomal Rearrangements in Two Women with Ovarian Dysfunction: Implications of Chromothripsis/Chromoanasynthesis-Dependent and -Independent Origins of Complex Genomic Alterations.
    Suzuki E; Shima H; Toki M; Hanew K; Matsubara K; Kurahashi H; Narumi S; Ogata T; Kamimaki T; Fukami M
    Cytogenet Genome Res; 2016; 150(2):86-92. PubMed ID: 28099951
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Two Patients with Complex Rearrangements Suggestive of Germline Chromoanagenesis.
    Arya P; Hodge JC; Matlock PA; Vance GH; Breman AM
    Cytogenet Genome Res; 2020; 160(11-12):671-679. PubMed ID: 33535208
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chromoanagenesis: cataclysms behind complex chromosomal rearrangements.
    Pellestor F
    Mol Cytogenet; 2019; 12():6. PubMed ID: 30805029
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Clinical Consequences of Chromothripsis and Other Catastrophic Cellular Events.
    Fukami M; Kurahashi H
    Methods Mol Biol; 2018; 1769():21-33. PubMed ID: 29564815
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Germline Chromothripsis Driven by L1-Mediated Retrotransposition and Alu/Alu Homologous Recombination.
    Nazaryan-Petersen L; Bertelsen B; Bak M; Jønson L; Tommerup N; Hancks DC; Tümer Z
    Hum Mutat; 2016 Apr; 37(4):385-95. PubMed ID: 26929209
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Copy number variations and constitutional chromothripsis (Review).
    Brás A; Rodrigues AS; Rueff J
    Biomed Rep; 2020 Sep; 13(3):11. PubMed ID: 32765850
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular dissection of germline chromothripsis in a developmental context using patient-derived iPS cells.
    Middelkamp S; van Heesch S; Braat AK; de Ligt J; van Iterson M; Simonis M; van Roosmalen MJ; Kelder MJ; Kruisselbrink E; Hochstenbach R; Verbeek NE; Ippel EF; Adolfs Y; Pasterkamp RJ; Kloosterman WP; Kuijk EW; Cuppen E
    Genome Med; 2017 Jan; 9(1):9. PubMed ID: 28126037
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Iceberg under Water: Unexplored Complexity of Chromoanagenesis in Congenital Disorders.
    Zepeda-Mendoza CJ; Morton CC
    Am J Hum Genet; 2019 Apr; 104(4):565-577. PubMed ID: 30951674
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chromoanasynthesis: another way for the formation of complex chromosomal abnormalities in human reproduction.
    Pellestor F; Gatinois V
    Hum Reprod; 2018 Aug; 33(8):1381-1387. PubMed ID: 30325427
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chromoanagenesis, the mechanisms of a genomic chaos.
    Pellestor F; Gaillard JB; Schneider A; Puechberty J; Gatinois V
    Semin Cell Dev Biol; 2022 Mar; 123():90-99. PubMed ID: 33608210
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chromoanagenesis: a piece of the macroevolution scenario.
    Pellestor F; Gatinois V
    Mol Cytogenet; 2020; 13():3. PubMed ID: 32010222
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Insight into the Molecular Basis Underlying Chromothripsis.
    Ostapińska K; Styka B; Lejman M
    Int J Mol Sci; 2022 Mar; 23(6):. PubMed ID: 35328739
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Defining the diverse spectrum of inversions, complex structural variation, and chromothripsis in the morbid human genome.
    Collins RL; Brand H; Redin CE; Hanscom C; Antolik C; Stone MR; Glessner JT; Mason T; Pregno G; Dorrani N; Mandrile G; Giachino D; Perrin D; Walsh C; Cipicchio M; Costello M; Stortchevoi A; An JY; Currall BB; Seabra CM; Ragavendran A; Margolin L; Martinez-Agosto JA; Lucente D; Levy B; Sanders SJ; Wapner RJ; Quintero-Rivera F; Kloosterman W; Talkowski ME
    Genome Biol; 2017 Mar; 18(1):36. PubMed ID: 28260531
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanistic origins of diverse genome rearrangements in cancer.
    Dahiya R; Hu Q; Ly P
    Semin Cell Dev Biol; 2022 Mar; 123():100-109. PubMed ID: 33824062
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genomic rearrangements induced by unscheduled DNA double strand breaks in somatic mammalian cells.
    So A; Le Guen T; Lopez BS; Guirouilh-Barbat J
    FEBS J; 2017 Aug; 284(15):2324-2344. PubMed ID: 28244221
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.