These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
182 related articles for article (PubMed ID: 32397067)
1. Highly Efficient Seo YM; Jang W; Gu T; Whang D Materials (Basel); 2020 May; 13(9):. PubMed ID: 32397067 [TBL] [Abstract][Full Text] [Related]
2. Cyclic chlorine trap-doping for transparent, conductive, thermally stable and damage-free graphene. Pham VP; Kim KN; Jeon MH; Kim KS; Yeom GY Nanoscale; 2014 Dec; 6(24):15301-8. PubMed ID: 25385489 [TBL] [Abstract][Full Text] [Related]
3. Chemical doping of large-area stacked graphene films for use as transparent, conducting electrodes. Kasry A; Kuroda MA; Martyna GJ; Tulevski GS; Bol AA ACS Nano; 2010 Jul; 4(7):3839-44. PubMed ID: 20695514 [TBL] [Abstract][Full Text] [Related]
4. Bromination of Graphene: A New Route to Making High Performance Transparent Conducting Electrodes with Low Optical Losses. Mansour AE; Dey S; Amassian A; Tanielian MH ACS Appl Mater Interfaces; 2015 Aug; 7(32):17692-9. PubMed ID: 26200126 [TBL] [Abstract][Full Text] [Related]
6. A graphene mesh as a hybrid electrode for foldable devices. Cho EH; Kim MJ; Sohn H; Shin WH; Won JY; Kim Y; Kwak C; Lee CS; Woo YS Nanoscale; 2018 Jan; 10(2):628-638. PubMed ID: 29235603 [TBL] [Abstract][Full Text] [Related]
7. Versatile and Tunable Electrical Properties of Doped Nonoxidized Graphene Using Alkali Metal Chlorides. Lee CK; Seo JG; Kim HJ; Hong SJ; Song G; Ahn C; Lee DJ; Song SH ACS Appl Mater Interfaces; 2019 Nov; 11(45):42520-42527. PubMed ID: 31633327 [TBL] [Abstract][Full Text] [Related]
8. Charge Transfer Dynamics of Doped Graphene Electrodes for Organic Light-Emitting Diodes. Park IJ; Kim TI; Choi SY ACS Appl Mater Interfaces; 2022 Sep; 14(38):43907-43916. PubMed ID: 36123321 [TBL] [Abstract][Full Text] [Related]
9. Selective Atomic Layer Deposition of Metals on Graphene for Transparent Conducting Electrode Application. Kim M; Nabeya S; Han SM; Kim MS; Lee S; Kim HM; Cho SY; Lee DJ; Kim SH; Kim KB ACS Appl Mater Interfaces; 2020 Mar; 12(12):14331-14340. PubMed ID: 32017528 [TBL] [Abstract][Full Text] [Related]
10. Cohesively Enhancing the Conductance, Mechanical Robustness, and Environmental Stability of Random Metallic Mesh Electrodes via Hot-Pressing-Induced In-Plane Configuration. Wang Z; Jiao B; Huang L; Zuo X; Zhang W; Li Y; Wang J; Dong H; Hou X; Wu Z ACS Appl Mater Interfaces; 2021 Sep; 13(35):41836-41845. PubMed ID: 34459190 [TBL] [Abstract][Full Text] [Related]
11. Vapor-phase molecular doping of graphene for high-performance transparent electrodes. Kim Y; Ryu J; Park M; Kim ES; Yoo JM; Park J; Kang JH; Hong BH ACS Nano; 2014 Jan; 8(1):868-74. PubMed ID: 24313602 [TBL] [Abstract][Full Text] [Related]
12. Enhancement of the effectiveness of graphene as a transparent conductive electrode by AgNO₃ doping. Shin DH; Lee KW; Lee JS; Kim JH; Kim S; Choi SH Nanotechnology; 2014 Mar; 25(12):125701. PubMed ID: 24572034 [TBL] [Abstract][Full Text] [Related]
13. Are there fundamental limitations on the sheet resistance and transmittance of thin graphene films? De S; Coleman JN ACS Nano; 2010 May; 4(5):2713-20. PubMed ID: 20384321 [TBL] [Abstract][Full Text] [Related]
14. Unusually High Optical Transparency in Hexagonal Nanopatterned Graphene with Enhanced Conductivity by Chemical Doping. Choi D; Kuru C; Choi C; Noh K; Hwang S; Choi W; Jin S Small; 2015 Jul; 11(26):3143-52. PubMed ID: 25828562 [TBL] [Abstract][Full Text] [Related]
16. Enhancing the conductivity of transparent graphene films via doping. Kim KK; Reina A; Shi Y; Park H; Li LJ; Lee YH; Kong J Nanotechnology; 2010 Jul; 21(28):285205. PubMed ID: 20585167 [TBL] [Abstract][Full Text] [Related]
17. Role of dopants in long-range charge carrier transport for p-type and n-type graphene transparent conducting thin films. Bult JB; Crisp R; Perkins CL; Blackburn JL ACS Nano; 2013 Aug; 7(8):7251-61. PubMed ID: 23859709 [TBL] [Abstract][Full Text] [Related]
18. Highly Stable and Effective Doping of Graphene by Selective Atomic Layer Deposition of Ruthenium. Kim M; Kim KJ; Lee SJ; Kim HM; Cho SY; Kim MS; Kim SH; Kim KB ACS Appl Mater Interfaces; 2017 Jan; 9(1):701-709. PubMed ID: 27936584 [TBL] [Abstract][Full Text] [Related]
19. Development of Annealing-Free, Solution-Processable Inverted Organic Solar Cells with N-Doped Graphene Electrodes using Zinc Oxide Nanoparticles. Jung S; Lee J; Seo J; Kim U; Choi Y; Park H Nano Lett; 2018 Feb; 18(2):1337-1343. PubMed ID: 29364692 [TBL] [Abstract][Full Text] [Related]
20. The application of graphene as electrodes in electrical and optical devices. Jo G; Choe M; Lee S; Park W; Kahng YH; Lee T Nanotechnology; 2012 Mar; 23(11):112001. PubMed ID: 22370228 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]