These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
172 related articles for article (PubMed ID: 32397186)
21. Second organic aerosol formation from the ozonolysis of alpha-pinene in the presence of dry submicron ammonium sulfate aerosol. Zhao Z; Hao J; Li J; Wu S J Environ Sci (China); 2008; 20(10):1183-8. PubMed ID: 19143341 [TBL] [Abstract][Full Text] [Related]
23. Measurements of secondary organic aerosol formed from OH-initiated photo-oxidation of isoprene using online photoionization aerosol mass spectrometry. Fang W; Gong L; Zhang Q; Cao M; Li Y; Sheng L Environ Sci Technol; 2012 Apr; 46(7):3898-904. PubMed ID: 22397593 [TBL] [Abstract][Full Text] [Related]
24. Effects of isoprene on the ozonolysis of Δ Zhang Z; Zhao Y; Zhao Y; Zang X; Xie H; Yang J; Zhang W; Wu G; Li G; Yang X; Jiang L J Environ Sci (China); 2025 Apr; 150():556-570. PubMed ID: 39306429 [TBL] [Abstract][Full Text] [Related]
25. Indoor fine particles: the role of terpene emissions from consumer products. Sarwar G; Olson DA; Corsi RL; Weschler CJ J Air Waste Manag Assoc; 2004 Mar; 54(3):367-77. PubMed ID: 15061618 [TBL] [Abstract][Full Text] [Related]
26. Modeling the formation of secondary organic aerosol (SOA). 2. The predicted effects of relative humidity on aerosol formation in the alpha-pinene-, beta-pinene-, sabinene-, delta 3-carene-, and cyclohexene-ozone systems. Seinfeld JH; Erdakos GB; Asher WE; Pankow JF Environ Sci Technol; 2001 May; 35(9):1806-17. PubMed ID: 11355196 [TBL] [Abstract][Full Text] [Related]
27. Indoor Illumination of Terpenes and Bleach Emissions Leads to Particle Formation and Growth. Wang C; Collins DB; Abbatt JPD Environ Sci Technol; 2019 Oct; 53(20):11792-11800. PubMed ID: 31576741 [TBL] [Abstract][Full Text] [Related]
28. Secondary organic aerosol from ozonolysis of biogenic volatile organic compounds: chamber studies of particle and reactive oxygen species formation. Chen X; Hopke PK; Carter WP Environ Sci Technol; 2011 Jan; 45(1):276-82. PubMed ID: 21121662 [TBL] [Abstract][Full Text] [Related]
29. Using proton transfer reaction mass spectrometry for online analysis of secondary organic aerosols. Hellén H; Dommen J; Metzger A; Gascho A; Duplissy J; Tritscher T; Prevot AS; Baltensperger U Environ Sci Technol; 2008 Oct; 42(19):7347-53. PubMed ID: 18939569 [TBL] [Abstract][Full Text] [Related]
30. Time-resolved molecular characterization of limonene/ozone aerosol using high-resolution electrospray ionization mass spectrometry. Bateman AP; Nizkorodov SA; Laskin J; Laskin A Phys Chem Chem Phys; 2009 Sep; 11(36):7931-42. PubMed ID: 19727500 [TBL] [Abstract][Full Text] [Related]
31. Aging of secondary organic aerosol from alpha-pinene ozonolysis: roles of hydroxyl and nitrate radicals. Qi L; Nakao S; Cocker DR J Air Waste Manag Assoc; 2012 Dec; 62(12):1359-69. PubMed ID: 23362755 [TBL] [Abstract][Full Text] [Related]
32. Measurement of secondary products during oxidation reactions of terpenes and ozone based on the PTR-MS analysis: effects of coexistent carbonyl compounds. Ishizuka Y; Tokumura M; Mizukoshi A; Noguchi M; Yanagisawa Y Int J Environ Res Public Health; 2010 Nov; 7(11):3853-70. PubMed ID: 21139865 [TBL] [Abstract][Full Text] [Related]
33. A chamber study of secondary organic aerosol formation by limonene ozonolysis. Chen X; Hopke PK Indoor Air; 2010 Aug; 20(4):320-8. PubMed ID: 20557377 [TBL] [Abstract][Full Text] [Related]
34. Size distribution and chemical composition of secondary organic aerosol formed from C1-initiated oxidation of toluene. Huang M; Zhang W; Gu X; Hu C; Zhao W; Wang Z; Fang L J Environ Sci (China); 2012; 24(5):860-4. PubMed ID: 22893963 [TBL] [Abstract][Full Text] [Related]
35. Modeling the formation of secondary organic aerosol. 1. Application of theoretical principles to measurements obtained in the alpha-pinene/, beta-pinene/, sabinene/, delta3-carene/, and cyclohexane/ozone systems. Pankow JF; Seinfeld JH; Asher WE; Erdakos GB Environ Sci Technol; 2001 Mar; 35(6):1164-72. PubMed ID: 11347929 [TBL] [Abstract][Full Text] [Related]
36. A significant role for nitrate and peroxide groups on indoor secondary organic aerosol. Carslaw N; Mota T; Jenkin ME; Barley MH; McFiggans G Environ Sci Technol; 2012 Sep; 46(17):9290-8. PubMed ID: 22881450 [TBL] [Abstract][Full Text] [Related]
37. Does the ubiquitous use of essential oil-based products promote indoor air quality? A critical literature review. Angulo Milhem S; Verriele M; Nicolas M; Thevenet F Environ Sci Pollut Res Int; 2020 May; 27(13):14365-14411. PubMed ID: 32162221 [TBL] [Abstract][Full Text] [Related]
38. Indoor air chemistry: Terpene reaction products and airway effects. Wolkoff P Int J Hyg Environ Health; 2020 Apr; 225():113439. PubMed ID: 32044535 [TBL] [Abstract][Full Text] [Related]
39. Homogeneous and heterogeneous reactions of anthracene with selected atmospheric oxidants. Zhang Y; Shu J; Zhang Y; Yang B J Environ Sci (China); 2013 Sep; 25(9):1817-23. PubMed ID: 24520724 [TBL] [Abstract][Full Text] [Related]
40. Morphology of mixed primary and secondary organic particles and the adsorption of spectator organic gases during aerosol formation. Vaden TD; Song C; Zaveri RA; Imre D; Zelenyuk A Proc Natl Acad Sci U S A; 2010 Apr; 107(15):6658-63. PubMed ID: 20194795 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]