BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 32397221)

  • 1. Targeting the C-Terminal Domain Small Phosphatase 1.
    Rallabandi HR; Ganesan P; Kim YJ
    Life (Basel); 2020 May; 10(5):. PubMed ID: 32397221
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phosphatase activity of small C-terminal domain phosphatase 1 (SCP1) controls the stability of the key neuronal regulator RE1-silencing transcription factor (REST).
    Burkholder NT; Mayfield JE; Yu X; Irani S; Arce DK; Jiang F; Matthews WL; Xue Y; Zhang YJ
    J Biol Chem; 2018 Oct; 293(43):16851-16861. PubMed ID: 30217818
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Arabidopsis C-terminal domain phosphatase-like 1 and 2 are essential Ser-5-specific C-terminal domain phosphatases.
    Koiwa H; Hausmann S; Bang WY; Ueda A; Kondo N; Hiraguri A; Fukuhara T; Bahk JD; Yun DJ; Bressan RA; Hasegawa PM; Shuman S
    Proc Natl Acad Sci U S A; 2004 Oct; 101(40):14539-44. PubMed ID: 15388846
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Harnessing the master transcriptional repressor REST to reciprocally regulate neurogenesis.
    Nesti E
    Neurogenesis (Austin); 2015; 2(1):e1055419. PubMed ID: 27535341
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural and functional analysis of the phosphoryl transfer reaction mediated by the human small C-terminal domain phosphatase, Scp1.
    Zhang M; Liu J; Kim Y; Dixon JE; Pfaff SL; Gill GN; Noel JP; Zhang Y
    Protein Sci; 2010 May; 19(5):974-86. PubMed ID: 20222012
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Arabidopsis CPL4 is an essential C-terminal domain phosphatase that suppresses xenobiotic stress responses.
    Fukudome A; Aksoy E; Wu X; Kumar K; Jeong IS; May K; Russell WK; Koiwa H
    Plant J; 2014 Oct; 80(1):27-39. PubMed ID: 25041272
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genetic and structural analysis of the essential fission yeast RNA polymerase II CTD phosphatase Fcp1.
    Schwer B; Ghosh A; Sanchez AM; Lima CD; Shuman S
    RNA; 2015 Jun; 21(6):1135-46. PubMed ID: 25883047
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A study of substrate specificity for a CTD phosphatase, SCP1, by proteomic screening of binding partners.
    Kim YJ; Bahk YY
    Biochem Biophys Res Commun; 2014 May; 448(2):189-94. PubMed ID: 24769477
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of a Substrate Identification Method for Human Scp1 Phosphatase Using Phosphorylation Mimic Phage Display.
    Otsubo K; Yoneda T; Kaneko A; Yagi S; Furukawa K; Chuman Y
    Protein Pept Lett; 2018; 25(1):76-83. PubMed ID: 29210629
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure and mechanism of RNA polymerase II CTD phosphatases.
    Kamenski T; Heilmeier S; Meinhart A; Cramer P
    Mol Cell; 2004 Aug; 15(3):399-407. PubMed ID: 15304220
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Small CTD phosphatases function in silencing neuronal gene expression.
    Yeo M; Lee SK; Lee B; Ruiz EC; Pfaff SL; Gill GN
    Science; 2005 Jan; 307(5709):596-600. PubMed ID: 15681389
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dephosphorylation of RNA polymerase II by CTD-phosphatase FCP1 is inhibited by phospho-CTD associating proteins.
    Palancade B; Marshall NF; Tremeau-Bravard A; Bensaude O; Dahmus ME; Dubois MF
    J Mol Biol; 2004 Jan; 335(2):415-24. PubMed ID: 14672652
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional characterization of small CTD phosphatases.
    Yeo M; Lin PS
    Methods Mol Biol; 2007; 365():335-46. PubMed ID: 17200573
    [TBL] [Abstract][Full Text] [Related]  

  • 14. MicroRNA 26b encoded by the intron of small CTD phosphatase (SCP) 1 has an antagonistic effect on its host gene.
    Sowa N; Horie T; Kuwabara Y; Baba O; Watanabe S; Nishi H; Kinoshita M; Takanabe-Mori R; Wada H; Shimatsu A; Hasegawa K; Kimura T; Ono K
    J Cell Biochem; 2012 Nov; 113(11):3455-65. PubMed ID: 22678827
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of the C-terminal domain of RNA polymerase II in expression of small nuclear RNA genes.
    Egloff S; Murphy S
    Biochem Soc Trans; 2008 Jun; 36(Pt 3):537-9. PubMed ID: 18482001
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Heat shock of HeLa cells inactivates a nuclear protein phosphatase specific for dephosphorylation of the C-terminal domain of RNA polymerase II.
    Dubois MF; Marshall NF; Nguyen VT; Dahmus GK; Bonnet F; Dahmus ME; Bensaude O
    Nucleic Acids Res; 1999 Mar; 27(5):1338-44. PubMed ID: 9973623
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Two-track virtual screening approach to identify both competitive and allosteric inhibitors of human small C-terminal domain phosphatase 1.
    Park H; Lee HS; Ku B; Lee SR; Kim SJ
    J Comput Aided Mol Des; 2017 Aug; 31(8):743-753. PubMed ID: 28653253
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ssu72 Is an RNA polymerase II CTD phosphatase.
    Krishnamurthy S; He X; Reyes-Reyes M; Moore C; Hampsey M
    Mol Cell; 2004 May; 14(3):387-94. PubMed ID: 15125841
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The repetitive C-terminal domain of RNA polymerase II: multiple conformational states drive the transcription cycle.
    Lin PS; Tremeau-Bravard A; Dahmus ME
    Chem Rec; 2003; 3(4):235-45. PubMed ID: 14595832
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Arabidopsis carboxyl-terminal domain phosphatase-like isoforms share common catalytic and interaction domains but have distinct in planta functions.
    Bang W; Kim S; Ueda A; Vikram M; Yun D; Bressan RA; Hasegawa PM; Bahk J; Koiwa H
    Plant Physiol; 2006 Oct; 142(2):586-94. PubMed ID: 16905668
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.