These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 32397453)

  • 1. iMethyl-Deep: N6 Methyladenosine Identification of Yeast Genome with Automatic Feature Extraction Technique by Using Deep Learning Algorithm.
    Mahmoudi O; Wahab A; Chong KT
    Genes (Basel); 2020 May; 11(5):. PubMed ID: 32397453
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A comprehensive comparison and analysis of computational predictors for RNA N6-methyladenosine sites of Saccharomyces cerevisiae.
    Zhu X; He J; Zhao S; Tao W; Xiong Y; Bi S
    Brief Funct Genomics; 2019 Nov; 18(6):367-376. PubMed ID: 31609411
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comprehensive review and assessment of computational methods for predicting RNA post-transcriptional modification sites from RNA sequences.
    Chen Z; Zhao P; Li F; Wang Y; Smith AI; Webb GI; Akutsu T; Baggag A; Bensmail H; Song J
    Brief Bioinform; 2020 Sep; 21(5):1676-1696. PubMed ID: 31714956
    [TBL] [Abstract][Full Text] [Related]  

  • 4. M6A-BiNP: predicting N
    Wang M; Xie J; Xu S
    RNA Biol; 2021 Dec; 18(12):2498-2512. PubMed ID: 34161188
    [TBL] [Abstract][Full Text] [Related]  

  • 5. MTDeepM6A-2S: A two-stage multi-task deep learning method for predicting RNA N6-methyladenosine sites of
    Wang H; Zhao S; Cheng Y; Bi S; Zhu X
    Front Microbiol; 2022; 13():999506. PubMed ID: 36274691
    [TBL] [Abstract][Full Text] [Related]  

  • 6. DNN-m6A: A Cross-Species Method for Identifying RNA N6-Methyladenosine Sites Based on Deep Neural Network with Multi-Information Fusion.
    Zhang L; Qin X; Liu M; Xu Z; Liu G
    Genes (Basel); 2021 Feb; 12(3):. PubMed ID: 33670877
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Induction of sporulation in Saccharomyces cerevisiae leads to the formation of N6-methyladenosine in mRNA: a potential mechanism for the activity of the IME4 gene.
    Clancy MJ; Shambaugh ME; Timpte CS; Bokar JA
    Nucleic Acids Res; 2002 Oct; 30(20):4509-18. PubMed ID: 12384598
    [TBL] [Abstract][Full Text] [Related]  

  • 8. DeepM6ASeq: prediction and characterization of m6A-containing sequences using deep learning.
    Zhang Y; Hamada M
    BMC Bioinformatics; 2018 Dec; 19(Suppl 19):524. PubMed ID: 30598068
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identifying N
    Xing P; Su R; Guo F; Wei L
    Sci Rep; 2017 Apr; 7():46757. PubMed ID: 28440291
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Predicting N6-Methyladenosine Sites in Multiple Tissues of Mammals through Ensemble Deep Learning.
    Luo Z; Lou L; Qiu W; Xu Z; Xiao X
    Int J Mol Sci; 2022 Dec; 23(24):. PubMed ID: 36555143
    [TBL] [Abstract][Full Text] [Related]  

  • 11. DL-m6A: Identification of N6-Methyladenosine Sites in Mammals Using Deep Learning Based on Different Encoding Schemes.
    Rehman MU; Tayara H; Chong KT
    IEEE/ACM Trans Comput Biol Bioinform; 2023; 20(2):904-911. PubMed ID: 35857733
    [TBL] [Abstract][Full Text] [Related]  

  • 12. BERMP: a cross-species classifier for predicting m
    Huang Y; He N; Chen Y; Chen Z; Li L
    Int J Biol Sci; 2018; 14(12):1669-1677. PubMed ID: 30416381
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of recognition residues for ligation-based detection and quantitation of pseudouridine and N6-methyladenosine.
    Dai Q; Fong R; Saikia M; Stephenson D; Yu YT; Pan T; Piccirilli JA
    Nucleic Acids Res; 2007; 35(18):6322-9. PubMed ID: 17881375
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison and Analysis of Computational Methods for Identifying N6-Methyladenosine Sites in Saccharomyces cerevisiae.
    Feng P; Feng L; Tang C
    Curr Pharm Des; 2021; 27(9):1219-1229. PubMed ID: 33167827
    [TBL] [Abstract][Full Text] [Related]  

  • 15. iRNA(m6A)-PseDNC: Identifying N
    Chen W; Ding H; Zhou X; Lin H; Chou KC
    Anal Biochem; 2018 Nov; 561-562():59-65. PubMed ID: 30201554
    [TBL] [Abstract][Full Text] [Related]  

  • 16. bCNN-Methylpred: Feature-Based Prediction of RNA Sequence Modification Using Branch Convolutional Neural Network.
    Islam N; Park J
    Genes (Basel); 2021 Jul; 12(8):. PubMed ID: 34440330
    [TBL] [Abstract][Full Text] [Related]  

  • 17. EDLm
    Zhang L; Li G; Li X; Wang H; Chen S; Liu H
    BMC Bioinformatics; 2021 May; 22(1):288. PubMed ID: 34051729
    [TBL] [Abstract][Full Text] [Related]  

  • 18. HSM6AP: a high-precision predictor for the Homo
    Li J; He S; Guo F; Zou Q
    RNA Biol; 2021 Nov; 18(11):1882-1892. PubMed ID: 33446014
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Global analysis of N6-methyladenosine functions and its disease association using deep learning and network-based methods.
    Zhang SY; Zhang SW; Fan XN; Meng J; Chen Y; Gao SJ; Huang Y
    PLoS Comput Biol; 2019 Jan; 15(1):e1006663. PubMed ID: 30601803
    [TBL] [Abstract][Full Text] [Related]  

  • 20. pRNAm-PC: Predicting N(6)-methyladenosine sites in RNA sequences via physical-chemical properties.
    Liu Z; Xiao X; Yu DJ; Jia J; Qiu WR; Chou KC
    Anal Biochem; 2016 Mar; 497():60-7. PubMed ID: 26748145
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.