These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 32397455)

  • 1. Gaussian Mixture Models for Control of Quasi-Passive Spinal Exoskeletons.
    Jamšek M; Petrič T; Babič J
    Sensors (Basel); 2020 May; 20(9):. PubMed ID: 32397455
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhancing Mobility With Quasi-Passive Variable Stiffness Exoskeletons.
    Sutrisno A; Braun DJ
    IEEE Trans Neural Syst Rehabil Eng; 2019 Mar; 27(3):487-496. PubMed ID: 30794186
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Model-based control for exoskeletons with series elastic actuators evaluated on sit-to-stand movements.
    Vantilt J; Tanghe K; Afschrift M; Bruijnes AKBD; Junius K; Geeroms J; Aertbeliën E; De Groote F; Lefeber D; Jonkers I; De Schutter J
    J Neuroeng Rehabil; 2019 Jun; 16(1):65. PubMed ID: 31159874
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Classification of Lifting Techniques for Application of A Robotic Hip Exoskeleton.
    Chen B; Lanotte F; Grazi L; Vitiello N; Crea S
    Sensors (Basel); 2019 Feb; 19(4):. PubMed ID: 30823508
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exoskeletons for industrial application and their potential effects on physical work load.
    de Looze MP; Bosch T; Krause F; Stadler KS; O'Sullivan LW
    Ergonomics; 2016 May; 59(5):671-81. PubMed ID: 26444053
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Joint stiffness modulation of compliant actuators for lower limb exoskeletons.
    Gonzalez-Vargas J; Shimoda S; Asin-Prieto G; Pons JL; Moreno JC
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1287-1292. PubMed ID: 28813998
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assessment of an On-board Classifier for Activity Recognition on an Active Back-Support Exoskeleton.
    Poliero T; Toxiri S; Anastasi S; Monica L; Ortiz DGCJ
    IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():559-564. PubMed ID: 31374689
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Short-Term Effects of a Passive Spinal Exoskeleton on Functional Performance, Discomfort and User Satisfaction in Patients with Low Back Pain.
    Kozinc Ž; Baltrusch S; Houdijk H; Šarabon N
    J Occup Rehabil; 2021 Mar; 31(1):142-152. PubMed ID: 32356222
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Passive Shoulder Exoskeletons: More Effective in the Lab Than in the Field?
    De Bock S; Ghillebert J; Govaerts R; Elprama SA; Marusic U; Serrien B; Jacobs A; Geeroms J; Meeusen R; De Pauw K
    IEEE Trans Neural Syst Rehabil Eng; 2021; 29():173-183. PubMed ID: 33264094
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biomechanical and Physiological Evaluation of a Multi-Joint Exoskeleton with Active-Passive Assistance for Walking.
    Cao W; Zhang Z; Chen C; He Y; Wang D; Wu X
    Biosensors (Basel); 2021 Oct; 11(10):. PubMed ID: 34677349
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Preliminary Assessment of a Compliant Gait Exoskeleton.
    Cestari M; Sanz-Merodio D; Garcia E
    Soft Robot; 2017 Jun; 4(2):135-146. PubMed ID: 29182092
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Trade-Off between Complexity and Interaction Quality for Upper Limb Exoskeleton Interfaces.
    Verdel D; Sahm G; Bruneau O; Berret B; Vignais N
    Sensors (Basel); 2023 Apr; 23(8):. PubMed ID: 37112463
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of a machine-learning-driven active-passive upper-limb exoskeleton robot: Experimental human-in-the-loop study.
    Nasr A; Hunter J; Dickerson CR; McPhee J
    Wearable Technol; 2023; 4():e13. PubMed ID: 38487766
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Predicting walking response to ankle exoskeletons using data-driven models.
    Rosenberg MC; Banjanin BS; Burden SA; Steele KM
    J R Soc Interface; 2020 Oct; 17(171):20200487. PubMed ID: 33050782
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Heuristic-Based Ankle Exoskeleton Control for Co-Adaptive Assistance of Human Locomotion.
    Jackson RW; Collins SH
    IEEE Trans Neural Syst Rehabil Eng; 2019 Oct; 27(10):2059-2069. PubMed ID: 31425120
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Novel swing-assist un-motorized exoskeletons for gait training.
    Mankala KK; Banala SK; Agrawal SK
    J Neuroeng Rehabil; 2009 Jul; 6():24. PubMed ID: 19575808
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Classification of Anticipatory Signals for Grasp and Release from Surface Electromyography.
    Siu HC; Shah JA; Stirling LA
    Sensors (Basel); 2016 Oct; 16(11):. PubMed ID: 27792155
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simulation of a Passive Knee Exoskeleton for Vertical Jump Using Optimal Control.
    Ostraich B; Riemer R
    IEEE Trans Neural Syst Rehabil Eng; 2020 Dec; 28(12):2859-2868. PubMed ID: 33226951
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamic Model of a Humanoid Exoskeleton of a Lower Limb with Hydraulic Actuators.
    Glowinski S; Obst M; Majdanik S; Potocka-Banaś B
    Sensors (Basel); 2021 May; 21(10):. PubMed ID: 34069145
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of passive back-support exoskeletons on physical demands and usability during patient transfer tasks.
    Hwang J; Kumar Yerriboina VN; Ari H; Kim JH
    Appl Ergon; 2021 May; 93():103373. PubMed ID: 33516046
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.