These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 32397473)

  • 1. In Situ Characterization of Damage Development in Cottonid Due to Quasi-Static Tensile Loading.
    Scholz R; Delp A; Walther F
    Materials (Basel); 2020 May; 13(9):. PubMed ID: 32397473
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In Situ Characterization of Polycaprolactone Fiber Response to Quasi-Static Tensile Loading in Scanning Electron Microscopy.
    Delp A; Becker A; Hülsbusch D; Scholz R; Müller M; Glasmacher B; Walther F
    Polymers (Basel); 2021 Jun; 13(13):. PubMed ID: 34202874
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Relationship between damage accumulation and mechanical property degradation in cortical bone: microcrack orientation is important.
    Akkus O; Knott DF; Jepsen KJ; Davy DT; Rimnac CM
    J Biomed Mater Res A; 2003 Jun; 65(4):482-8. PubMed ID: 12761839
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Detection and Characterization of Damage in Quasi-Static Loaded Composite Structures using Passive Thermography.
    Zalameda J; Winfree W
    Sensors (Basel); 2018 Oct; 18(10):. PubMed ID: 30347845
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Material heterogeneity, microstructure, and microcracks demonstrate differential influence on crack initiation and propagation in cortical bone.
    Demirtas A; Ural A
    Biomech Model Mechanobiol; 2018 Oct; 17(5):1415-1428. PubMed ID: 29808355
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In-Situ Dynamic Response Measurement for Damage Quantification of 3D Printed ABS Cantilever Beam under Thermomechanical Load.
    Baqasah H; He F; Zai BA; Asif M; Khan KA; Thakur VK; Khan MA
    Polymers (Basel); 2019 Dec; 11(12):. PubMed ID: 31842417
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Finite element modeling of damage accumulation in trabecular bone under cyclic loading.
    Guo XE; McMahon TA; Keaveny TM; Hayes WC; Gibson LJ
    J Biomech; 1994 Feb; 27(2):145-55. PubMed ID: 8132682
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Experimental validation of a microcracking-based toughening mechanism for cortical bone.
    Vashishth D; Tanner KE; Bonfield W
    J Biomech; 2003 Jan; 36(1):121-4. PubMed ID: 12485646
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Crack Propagation Calculations for Optical Fibers under Static Bending and Tensile Loads Using Continuum Damage Mechanics.
    Chen Y; Cui Y; Gong W
    Sensors (Basel); 2017 Nov; 17(11):. PubMed ID: 29140284
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Experimental Investigations of Micro-Meso Damage Evolution for a Co/WC-Type Tool Material with Application of Digital Image Correlation and Machine Learning.
    Schneider Y; Zielke R; Xu C; Tayyab M; Weber U; Schmauder S; Tillmann W
    Materials (Basel); 2021 Jun; 14(13):. PubMed ID: 34202151
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Post-Process Effects of Isothermal Annealing and Initially Applied Static Uniaxial Loading on the Ultimate Tensile Strength of Fused Filament Fabrication Parts.
    Rane R; Kulkarni A; Prajapati H; Taylor R; Jain A; Chen V
    Materials (Basel); 2020 Jan; 13(2):. PubMed ID: 31940919
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In Situ Scanning Electron Microscope (SEM) Observations of Damage and Crack Growth of Shale.
    Cui Z; Han W
    Microsc Microanal; 2018 Apr; 24(2):107-115. PubMed ID: 29699599
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanical characterization of dental ceramics by hertzian contacts.
    Peterson IM; Pajares A; Lawn BR; Thompson VP; Rekow ED
    J Dent Res; 1998 Apr; 77(4):589-602. PubMed ID: 9539462
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Additive Manufacturing Benchmark 2022 Subcontinuum Mesoscale Tensile Challenge (CHAL-AMB2022-04-MeTT) and Summary of Predictions.
    Kafka OL; Benzing J; Moser N; Liew LA; Weaver J; Hrabe N
    Integr Mater Manuf Innov; 2023; 12():. PubMed ID: 38449837
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An SEM compatible plasma cell for in situ studies of hydrogen-material interaction.
    Massone A; Manhard A; Jacob W; Drexler A; Ecker W; Hohenwarter A; Wurster S; Kiener D
    Rev Sci Instrum; 2020 Apr; 91(4):043705. PubMed ID: 32357725
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In situ investigations of failure mechanisms of silica fibers from the venus flower basket (Euplectella Aspergillum).
    Morankar SK; Mistry Y; Bhate D; Penick CA; Chawla N
    Acta Biomater; 2023 May; 162():304-311. PubMed ID: 36963595
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An Experimental and Numerical Investigation to Characterize an Aerospace Composite Material with Open-Hole Using Non-Destructive Techniques.
    Feito N; Calvo JV; Belda R; Giner E
    Sensors (Basel); 2020 Jul; 20(15):. PubMed ID: 32722534
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Plastic damage induced fracture behaviors of dental ceramic layer structures subjected to monotonic load.
    Wang R; Lu C; Arola D; Zhang D
    J Prosthodont; 2013 Aug; 22(6):456-64. PubMed ID: 23551817
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In situ tensile testing of individual Co nanowires inside a scanning electron microscope.
    Zhang D; Breguet JM; Clavel R; Phillippe L; Utke I; Michler J
    Nanotechnology; 2009 Sep; 20(36):365706. PubMed ID: 19687546
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Crack Initiation in Compacted Graphite Iron with Random Microstructure: Effect of Volume Fraction and Distribution of Particles.
    Luo X; Baxevanakis KP; Silberschmidt VV
    Materials (Basel); 2024 Jul; 17(13):. PubMed ID: 38998425
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.