BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 32397707)

  • 1. A near-IR Fluorescent Probe for Enantioselective Recognition of Amino Acids in Aqueous Solution.
    Zhao F; Tian J; Wu X; Li S; Chen Y; Yu S; Yu X; Pu L
    J Org Chem; 2020 Jun; 85(11):7342-7348. PubMed ID: 32397707
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sulfonation of 3,3'-Diformyl-BINOL for Enantioselective Fluorescent Recognition of Amino Acids in Water.
    Zhao F; Wang Y; Wu X; Yu S; Yu X; Pu L
    Chemistry; 2020 Jun; 26(32):7258-7262. PubMed ID: 32128894
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enantioselective fluorescent sensors: a tale of BINOL.
    Pu L
    Acc Chem Res; 2012 Feb; 45(2):150-63. PubMed ID: 21834528
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Near-IR Fluorescent Recognition of Arginine: High Chemoselectivity and Enantioselectivity Promoted by La
    Guo H; Yang J; Zeng J; Yu X; Yu S; Pu L
    Chempluschem; 2023 Jun; 88(6):e202300138. PubMed ID: 37163301
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simultaneous Determination of Concentration and Enantiomeric Composition in Fluorescent Sensing.
    Pu L
    Acc Chem Res; 2017 Apr; 50(4):1032-1040. PubMed ID: 28287702
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Amphiphilic Polymer-Based Fluorescent Probe for Enantioselective Recognition of Amino Acids in Immiscible Water and Organic Phases.
    Nian S; Pu L
    Chemistry; 2017 Dec; 23(71):18066-18073. PubMed ID: 29069528
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Free Amino Acid Recognition: A Bisbinaphthyl-Based Fluorescent Probe with High Enantioselectivity.
    Zhu YY; Wu XD; Gu SX; Pu L
    J Am Chem Soc; 2019 Jan; 141(1):175-181. PubMed ID: 30525565
    [TBL] [Abstract][Full Text] [Related]  

  • 8. From MonoBINOL to BisBINOL: Expanded Enantioselective Fluorescent Recognition of Amino Acids.
    Huo B; Lu K; Tian J; Zhao F; Wang Y; Yu S; Yu X; Pu L
    J Org Chem; 2021 May; 86(9):6780-6786. PubMed ID: 33900764
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biphasic Enantioselective Fluorescent Recognition of Amino Acids by a Fluorophilic Probe.
    Zhu YY; Wu XD; Abed M; Gu SX; Pu L
    Chemistry; 2019 Jun; 25(33):7866-7873. PubMed ID: 30893491
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enantioselective Recognition of Lysine and Phenylalanine Using an Imidazole Salt-Type Fluorescent Probe Based on H
    Wei Z; Tang S; Sun X; Hu Y
    Molecules; 2022 Dec; 27(23):. PubMed ID: 36500558
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Semiquantitative Visual Chiral Assay with a Pseudoenantiomeric Fluorescent Sensor Pair.
    Chen Y; Zhao F; Tian J; Jiang L; Lu K; Jiang Y; Li H; Yu S; Yu X; Pu L
    J Org Chem; 2021 Jul; 86(14):9603-9609. PubMed ID: 34165295
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Study of the fluorescent properties of partially hydrogenated 1,1'-bi-2-naphthol-amine molecules and their use for enantioselective fluorescent recognition.
    Yu S; DeBerardinis AM; Turlington M; Pu L
    J Org Chem; 2011 Apr; 76(8):2814-9. PubMed ID: 21405012
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A selective fluorescent 'turn-on' sensor for recognition of Zn(2+) in aqueous media.
    Ozdemir M
    Spectrochim Acta A Mol Biomol Spectrosc; 2016 May; 161():115-21. PubMed ID: 26967512
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Excitation of One Fluorescent Probe at Two Different Wavelengths to Determine the Concentration and Enantiomeric Composition of Amino Acids.
    Wang Q; Wu X; Pu L
    Org Lett; 2019 Nov; 21(22):9036-9039. PubMed ID: 31663766
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Micelle-Encapsulated Fluorescent Probe: Chemoselective and Enantioselective Recognition of Lysine in Aqueous Solution.
    Du G; Pu L
    Org Lett; 2019 Jun; 21(12):4777-4781. PubMed ID: 31184163
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rational design of a fluorescent sensor to simultaneously determine both the enantiomeric composition and the concentration of chiral functional amines.
    Wen K; Yu S; Huang Z; Chen L; Xiao M; Yu X; Pu L
    J Am Chem Soc; 2015 Apr; 137(13):4517-24. PubMed ID: 25790271
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Racemic Fluorescence Probe for Enantiomeric Excess Determination: Application of Cononsolvency of a Polymer in Sensing.
    Nian S; Pu L
    J Org Chem; 2019 Jan; 84(2):909-913. PubMed ID: 30547584
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fluorescent Recognition of Zn
    Song T; Cao Y; Zhao G; Pu L
    Inorg Chem; 2017 Apr; 56(8):4395-4399. PubMed ID: 28345893
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hg(2+) -induced in situ generated radical cation of (S)-BINOL-based polymer for highly enantioselective recognition of phenylalaninol.
    Jiao J; Li F; Zhang S; Quan Y; Zheng W; Cheng Y; Zhu C
    Macromol Rapid Commun; 2014 Aug; 35(16):1443-9. PubMed ID: 25048009
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simultaneous Determination of Concentration and Enantiomeric Composition of Amino Acids in Aqueous Solution by Using a Tetrabromobinaphthyl Dialdehyde Probe.
    Iqbal S; Yu S; Jiang L; Wang X; Chen Y; Wang Y; Yu X; Pu L
    Chemistry; 2019 Jul; 25(42):9967-9972. PubMed ID: 31056773
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.