BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 32398687)

  • 1. Complexity and plasticity in honey bee phototactic behaviour.
    Nouvian M; Galizia CG
    Sci Rep; 2020 May; 10(1):7872. PubMed ID: 32398687
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Honeybees (Apis mellifera) learn color discriminations via differential conditioning independent of long wavelength (green) photoreceptor modulation.
    Reser DH; Wijesekara Witharanage R; Rosa MG; Dyer AG
    PLoS One; 2012; 7(11):e48577. PubMed ID: 23155394
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inhibitory learning of phototaxis by honeybees in a passive-avoidance task.
    Marchal P; Villar ME; Geng H; Arrufat P; Combe M; Viola H; Massou I; Giurfa M
    Learn Mem; 2019 Oct; 26(10):1-12. PubMed ID: 31527185
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cognitive components of color vision in honey bees: how conditioning variables modulate color learning and discrimination.
    Avarguès-Weber A; Giurfa M
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2014 Jun; 200(6):449-61. PubMed ID: 24788332
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Aminergic neuromodulation of associative visual learning in harnessed honey bees.
    Mancini N; Giurfa M; Sandoz JC; Avarguès-Weber A
    Neurobiol Learn Mem; 2018 Nov; 155():556-567. PubMed ID: 29793042
    [TBL] [Abstract][Full Text] [Related]  

  • 6. cGMP-dependent changes in phototaxis: a possible role for the foraging gene in honey bee division of labor.
    Ben-Shahar Y; Leung HT; Pak WL; Sokolowski MB; Robinson GE
    J Exp Biol; 2003 Jul; 206(Pt 14):2507-15. PubMed ID: 12796464
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Visual associative learning in restrained honey bees with intact antennae.
    Dobrin SE; Fahrbach SE
    PLoS One; 2012; 7(6):e37666. PubMed ID: 22701575
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Blue colour preference in honeybees distracts visual attention for learning closed shapes.
    Morawetz L; Svoboda A; Spaethe J; Dyer AG
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2013 Oct; 199(10):817-27. PubMed ID: 23918312
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Colour processing in complex environments: insights from the visual system of bees.
    Dyer AG; Paulk AC; Reser DH
    Proc Biol Sci; 2011 Mar; 278(1707):952-9. PubMed ID: 21147796
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multispectral images of flowers reveal the adaptive significance of using long-wavelength-sensitive receptors for edge detection in bees.
    Vasas V; Hanley D; Kevan PG; Chittka L
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2017 Apr; 203(4):301-311. PubMed ID: 28314998
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanisms, functions and ecology of colour vision in the honeybee.
    Hempel de Ibarra N; Vorobyev M; Menzel R
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2014 Jun; 200(6):411-33. PubMed ID: 24828676
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The expression of three opsin genes and phototactic behavior of Spodoptera exigua (Lepidoptera: Noctuidae): Evidence for visual function of opsin in phototaxis.
    Liu YJ; Yan S; Shen ZJ; Li Z; Zhang XF; Liu XM; Zhang QW; Liu XX
    Insect Biochem Mol Biol; 2018 May; 96():27-35. PubMed ID: 29625217
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chromatic processing in the anterior optic tubercle of the honey bee brain.
    Mota T; Gronenberg W; Giurfa M; Sandoz JC
    J Neurosci; 2013 Jan; 33(1):4-16. PubMed ID: 23283317
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improved color constancy in honey bees enabled by parallel visual projections from dorsal ocelli.
    Garcia JE; Hung YS; Greentree AD; Rosa MGP; Endler JA; Dyer AG
    Proc Natl Acad Sci U S A; 2017 Jul; 114(29):7713-7718. PubMed ID: 28673984
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Understanding innate preferences of wild bee species: responses to wavelength-dependent selective excitation of blue and green photoreceptor types.
    Ostroverkhova O; Galindo G; Lande C; Kirby J; Scherr M; Hoffman G; Rao S
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2018 Jul; 204(7):667-675. PubMed ID: 29869687
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Eyespot-dependent determination of the phototactic sign in Chlamydomonas reinhardtii.
    Ueki N; Ide T; Mochiji S; Kobayashi Y; Tokutsu R; Ohnishi N; Yamaguchi K; Shigenobu S; Tanaka K; Minagawa J; Hisabori T; Hirono M; Wakabayashi K
    Proc Natl Acad Sci U S A; 2016 May; 113(19):5299-304. PubMed ID: 27122315
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Photoreceptors and neural circuitry underlying phototaxis in insects.
    Yamaguchi S; Heisenberg M
    Fly (Austin); 2011; 5(4):333-6. PubMed ID: 21670603
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differences in photoreceptor processing speed for chromatic and achromatic vision in the bumblebee, Bombus terrestris.
    Skorupski P; Chittka L
    J Neurosci; 2010 Mar; 30(11):3896-903. PubMed ID: 20237260
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Learning of monochromatic stimuli in Apis cerana and Apis mellifera by means of PER conditioning.
    Lichtenstein L; Brockmann A; Spaethe J
    J Insect Physiol; 2019 Apr; 114():30-34. PubMed ID: 30776425
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of the genetically tractable crustacean Parhyale hawaiensis reveals the organisation of a sensory system for low-resolution vision.
    Ramos AP; Gustafsson O; Labert N; Salecker I; Nilsson DE; Averof M
    BMC Biol; 2019 Aug; 17(1):67. PubMed ID: 31416484
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.