These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 32399076)

  • 21. Implications of synaptic biophysics for recurrent network dynamics and active memory.
    Durstewitz D
    Neural Netw; 2009 Oct; 22(8):1189-200. PubMed ID: 19647396
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Computational simulation of the input-output relationship in hippocampal pyramidal cells.
    Li X; Ascoli GA
    J Comput Neurosci; 2006 Oct; 21(2):191-209. PubMed ID: 16871350
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A Highly Effective and Robust Membrane Potential-Driven Supervised Learning Method for Spiking Neurons.
    Zhang M; Qu H; Belatreche A; Chen Y; Yi Z
    IEEE Trans Neural Netw Learn Syst; 2019 Jan; 30(1):123-137. PubMed ID: 29993588
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Resonance with subthreshold oscillatory drive organizes activity and optimizes learning in neural networks.
    Roach JP; Pidde A; Katz E; Wu J; Ognjanovski N; Aton SJ; Zochowski MR
    Proc Natl Acad Sci U S A; 2018 Mar; 115(13):E3017-E3025. PubMed ID: 29545273
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The Spectrum of Asynchronous Dynamics in Spiking Networks as a Model for the Diversity of Non-rhythmic Waking States in the Neocortex.
    Zerlaut Y; Zucca S; Panzeri S; Fellin T
    Cell Rep; 2019 Apr; 27(4):1119-1132.e7. PubMed ID: 31018128
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Supervised learning in spiking neural networks: A review of algorithms and evaluations.
    Wang X; Lin X; Dang X
    Neural Netw; 2020 May; 125():258-280. PubMed ID: 32146356
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A Digital Liquid State Machine With Biologically Inspired Learning and Its Application to Speech Recognition.
    Zhang Y; Li P; Jin Y; Choe Y
    IEEE Trans Neural Netw Learn Syst; 2015 Nov; 26(11):2635-49. PubMed ID: 25643415
    [TBL] [Abstract][Full Text] [Related]  

  • 28. On the sample complexity of learning for networks of spiking neurons with nonlinear synaptic interactions.
    Schmitt M
    IEEE Trans Neural Netw; 2004 Sep; 15(5):995-1001. PubMed ID: 15484876
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Integration and transmission of distributed deterministic neural activity in feed-forward networks.
    Asai Y; Villa AE
    Brain Res; 2012 Jan; 1434():17-33. PubMed ID: 22071564
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Temporal-specific complexity of spiking patterns in spontaneous activity induced by a dual complex network structure.
    Nobukawa S; Nishimura H; Yamanishi T
    Sci Rep; 2019 Sep; 9(1):12749. PubMed ID: 31484990
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Simulations of working memory spiking networks driven by short-term plasticity.
    Tiddia G; Golosio B; Fanti V; Paolucci PS
    Front Integr Neurosci; 2022; 16():972055. PubMed ID: 36262372
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A new approach to detect the coding rule of the cortical spiking model in the information transmission.
    Nazari S; Faez K; Janahmadi M
    Neural Netw; 2018 Mar; 99():68-78. PubMed ID: 29355733
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Analytical and simulation results for stochastic Fitzhugh-Nagumo neurons and neural networks.
    Tuckwell HC; Rodriguez R
    J Comput Neurosci; 1998 Mar; 5(1):91-113. PubMed ID: 9540051
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A spiking network model of short-term active memory.
    Zipser D; Kehoe B; Littlewort G; Fuster J
    J Neurosci; 1993 Aug; 13(8):3406-20. PubMed ID: 8340815
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Self-Organization of Microcircuits in Networks of Spiking Neurons with Plastic Synapses.
    Ocker GK; Litwin-Kumar A; Doiron B
    PLoS Comput Biol; 2015 Aug; 11(8):e1004458. PubMed ID: 26291697
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Extended liquid state machines for speech recognition.
    Deckers L; Tsang IJ; Van Leekwijck W; Latré S
    Front Neurosci; 2022; 16():1023470. PubMed ID: 36389242
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Efficient transmission of subthreshold signals in complex networks of spiking neurons.
    Torres JJ; Elices I; Marro J
    PLoS One; 2015; 10(3):e0121156. PubMed ID: 25799449
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Bio-inspired spiking neural network for nonlinear systems control.
    Pérez J; Cabrera JA; Castillo JJ; Velasco JM
    Neural Netw; 2018 Aug; 104():15-25. PubMed ID: 29702424
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mechanisms that modulate the transfer of spiking correlations.
    Rosenbaum R; Josić K
    Neural Comput; 2011 May; 23(5):1261-305. PubMed ID: 21299426
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effects of fast presynaptic noise in attractor neural networks.
    Cortes JM; Torres JJ; Marro J; Garrido PL; Kappen HJ
    Neural Comput; 2006 Mar; 18(3):614-33. PubMed ID: 16483410
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.