BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 32399509)

  • 1. Hydroxyl carlactone derivatives are predominant strigolactones in
    Yoneyama K; Akiyama K; Brewer PB; Mori N; Kawano-Kawada M; Haruta S; Nishiwaki H; Yamauchi S; Xie X; Umehara M; Beveridge CA; Yoneyama K; Nomura T
    Plant Direct; 2020 May; 4(5):e00219. PubMed ID: 32399509
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Carlactone is converted to carlactonoic acid by MAX1 in Arabidopsis and its methyl ester can directly interact with AtD14 in vitro.
    Abe S; Sado A; Tanaka K; Kisugi T; Asami K; Ota S; Kim HI; Yoneyama K; Xie X; Ohnishi T; Seto Y; Yamaguchi S; Akiyama K; Yoneyama K; Nomura T
    Proc Natl Acad Sci U S A; 2014 Dec; 111(50):18084-9. PubMed ID: 25425668
    [TBL] [Abstract][Full Text] [Related]  

  • 3. LATERAL BRANCHING OXIDOREDUCTASE acts in the final stages of strigolactone biosynthesis in Arabidopsis.
    Brewer PB; Yoneyama K; Filardo F; Meyers E; Scaffidi A; Frickey T; Akiyama K; Seto Y; Dun EA; Cremer JE; Kerr SC; Waters MT; Flematti GR; Mason MG; Weiller G; Yamaguchi S; Nomura T; Smith SM; Yoneyama K; Beveridge CA
    Proc Natl Acad Sci U S A; 2016 May; 113(22):6301-6. PubMed ID: 27194725
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Conversion of carlactone to carlactonoic acid is a conserved function of MAX1 homologs in strigolactone biosynthesis.
    Yoneyama K; Mori N; Sato T; Yoda A; Xie X; Okamoto M; Iwanaga M; Ohnishi T; Nishiwaki H; Asami T; Yokota T; Akiyama K; Yoneyama K; Nomura T
    New Phytol; 2018 Jun; 218(4):1522-1533. PubMed ID: 29479714
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chemical identification of 18-hydroxycarlactonoic acid as an LjMAX1 product and in planta conversion of its methyl ester to canonical and non-canonical strigolactones in Lotus japonicus.
    Mori N; Sado A; Xie X; Yoneyama K; Asami K; Seto Y; Nomura T; Yamaguchi S; Yoneyama K; Akiyama K
    Phytochemistry; 2020 Jun; 174():112349. PubMed ID: 32213359
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Specific methylation of (11R)-carlactonoic acid by an Arabidopsis SABATH methyltransferase.
    Wakabayashi T; Yasuhara R; Miura K; Takikawa H; Mizutani M; Sugimoto Y
    Planta; 2021 Sep; 254(5):88. PubMed ID: 34586497
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The tomato MAX1 homolog, SlMAX1, is involved in the biosynthesis of tomato strigolactones from carlactone.
    Zhang Y; Cheng X; Wang Y; Díez-Simón C; Flokova K; Bimbo A; Bouwmeester HJ; Ruyter-Spira C
    New Phytol; 2018 Jul; 219(1):297-309. PubMed ID: 29655242
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Conversion of methyl carlactonoate to heliolactone in sunflower.
    Wakabayashi T; Shinde H; Shiotani N; Yamamoto S; Mizutani M; Takikawa H; Sugimoto Y
    Nat Prod Res; 2022 May; 36(9):2215-2222. PubMed ID: 33034235
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evidence for species-dependent biosynthetic pathways for converting carlactone to strigolactones in plants.
    Iseki M; Shida K; Kuwabara K; Wakabayashi T; Mizutani M; Takikawa H; Sugimoto Y
    J Exp Bot; 2018 Apr; 69(9):2305-2318. PubMed ID: 29294064
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Apocarotenoid Zaxinone Is a Positive Regulator of Strigolactone and Abscisic Acid Biosynthesis in Arabidopsis Roots.
    Ablazov A; Mi J; Jamil M; Jia KP; Wang JY; Feng Q; Al-Babili S
    Front Plant Sci; 2020; 11():578. PubMed ID: 32477389
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Which are the major players, canonical or non-canonical strigolactones?
    Yoneyama K; Xie X; Yoneyama K; Kisugi T; Nomura T; Nakatani Y; Akiyama K; McErlean CSP
    J Exp Bot; 2018 Apr; 69(9):2231-2239. PubMed ID: 29522151
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Carlactone-type strigolactones and their synthetic analogues as inducers of hyphal branching in arbuscular mycorrhizal fungi.
    Mori N; Nishiuma K; Sugiyama T; Hayashi H; Akiyama K
    Phytochemistry; 2016 Oct; 130():90-8. PubMed ID: 27264641
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Strigolactones, a novel carotenoid-derived plant hormone.
    Al-Babili S; Bouwmeester HJ
    Annu Rev Plant Biol; 2015; 66():161-86. PubMed ID: 25621512
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Carlactone is an endogenous biosynthetic precursor for strigolactones.
    Seto Y; Sado A; Asami K; Hanada A; Umehara M; Akiyama K; Yamaguchi S
    Proc Natl Acad Sci U S A; 2014 Jan; 111(4):1640-5. PubMed ID: 24434551
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rice cytochrome P450 MAX1 homologs catalyze distinct steps in strigolactone biosynthesis.
    Zhang Y; van Dijk AD; Scaffidi A; Flematti GR; Hofmann M; Charnikhova T; Verstappen F; Hepworth J; van der Krol S; Leyser O; Smith SM; Zwanenburg B; Al-Babili S; Ruyter-Spira C; Bouwmeester HJ
    Nat Chem Biol; 2014 Dec; 10(12):1028-33. PubMed ID: 25344813
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Carlactone-independent seedling morphogenesis in Arabidopsis.
    Scaffidi A; Waters MT; Ghisalberti EL; Dixon KW; Flematti GR; Smith SM
    Plant J; 2013 Oct; 76(1):1-9. PubMed ID: 23773129
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nutritional and tissue-specific regulation of cytochrome P450 CYP711A MAX1 homologues and strigolactone biosynthesis in wheat.
    Sigalas PP; Buchner P; Thomas SG; Jamois F; Arkoun M; Yvin JC; Bennett MJ; Hawkesford MJ
    J Exp Bot; 2023 Mar; 74(6):1890-1910. PubMed ID: 36626359
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Unique Sulfotransferase-Involving Strigolactone Biosynthetic Route in Sorghum.
    Wu S; Li Y
    Front Plant Sci; 2021; 12():793459. PubMed ID: 34970291
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of two oxygenase genes involved in the respective biosynthetic pathways of canonical and non-canonical strigolactones in Lotus japonicus.
    Mori N; Nomura T; Akiyama K
    Planta; 2020 Jan; 251(2):40. PubMed ID: 31907631
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Strigolactone biosynthesis is evolutionarily conserved, regulated by phosphate starvation and contributes to resistance against phytopathogenic fungi in a moss, Physcomitrella patens.
    Decker EL; Alder A; Hunn S; Ferguson J; Lehtonen MT; Scheler B; Kerres KL; Wiedemann G; Safavi-Rizi V; Nordzieke S; Balakrishna A; Baz L; Avalos J; Valkonen JPT; Reski R; Al-Babili S
    New Phytol; 2017 Oct; 216(2):455-468. PubMed ID: 28262967
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.